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1 Introduction

Non-relativistic mechanics yields a reasonable approximate description of phys-
ical phenomena in the range where the particles’ kinetic energies are small com-
pared with their rest mass energies. However, it should be noted that when the
relativistic invariant mass of a particle is expressed in terms of its energy E and
momentum p via

E2 − p2 c2 = m2 c4 (1)

it implies that its dispersion relation has two branches

E = ± c
√

p2 + m2 c2 (2)

In relativistic classical mechanics, it is assumed expedient to neglect the negative-
energy solutions. This assumption based on the expectation that, since energy

pc

E
(p
)

+mc
2

-mc
2

2mc
2

Figure 1: The positive and negative energy branches for a relativistic particle
with rest mass m. The minimum separation between the positive-energy branch
and the negative-energy branch is 2mc2.

can only change continuously, it is impossible that a particle with positive energy
can make a transition from the positive to negative-energy states. However, in
quantum mechanics, particles can make discontinuous transitions. Therefore, it
is necessary to consider both the positive and negative-energy branches. These
considerations naturally lead one to the concept of particles and anti-particles,
and also to the realization that one must consider multi-particle quantum me-
chanics or field theory.

We shall take a look at the quantum mechanical description of the elec-
tromagnetic field, Dirac’s relativistic theory of spin one-half fermions (such as
leptons and quarks), and then look at the interaction between these particles
and the electromagnetic field. The interaction between charged fermions and
the electromagnetic field is known as Quantum Electrodynamics. Quantum
Electrodynamics contains some surprises, namely that although the interaction
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appears to be governed by a small coupling strength

(
e2

h̄ c

)
∼ 1

137.0359979
(3)

perturbation theory does not converge. In fact, straightforward perturbation
theory is plagued by infinities. However, physics is a discipline which is aimed
at uncovering the relationships between measured quantities. The quantities
e and m which occur in quantum electrodynamics are theoretical constructs
which, respectively, describe the bare charge of the electron and bare mass of
the electron. This means one is assuming that e and m would be the results
of measurements on a (fictional) electron which does not interact electromag-
netically. That is, e and m are not physically measurable and their values are
therefore unknown. What can be measured experimentally are the renormal-
ized mass and the renormalized charge of the electron. The divergences found in
quantum electrodynamics can be shown to cancel or drop out, when one relates
different physically measurable quantities, as only the renormalized masses and
energies enter the theory. Despite the existence of infinities, quantum electrody-
namics is an extremely accurate theory. Experimentally determined quantities
can be predicted to an extremely high degree of precision.

The framework of quantum electrodynamics can be extended to describe
the unification of electrodynamics and the weak interaction via electro-weak
theory, which is also well tested. The scalar (U(1)) gauge symmetry of the elec-
tromagnetic field is replaced by a matrix (SU(2)) symmetry of the combined
electro-weak theory, in which the gauge field couples to the two components of
the spinor wave functions of the fermions. The generalization of the gauge field
necessitates the inclusion of additional components. Through symmetry break-
ing, some components of the field which mediates the electro-weak interaction
become massive, i.e. have finite masses. The finite masses are responsible for
the short range of the weak interaction. More tentatively, the gauge theory
framework of quantum electrodynamics has also been extended to describe the
interactions between quarks which is mediated by the gluon field. The gauge
symmetry of the interaction is enlarged to an SU(3) symmetry. However, un-
like quantum electrodynamics where photons are uncharged and do not interact
with themselves, the gluons do interact amongst themselves.

2 Quantum Mechanics of a Single Photon

Maxwell’s equations were formulated to describe classical electromagnetism. In
the quantum description, the classical electromagnetic field is described as being
composed of a very large number of photons. Before one describes multi-photon
quantum mechanics of the electromagnetic field, one should ascertain the form
of the Schrödinger equation for a single photon. The photon is a massless, un-
charged particle of spin-one.
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A spin-one particle is described by a vector wave function. This can be
heuristically motivated as follows:

A spin-zero particle has just one state and is uniquely described by a one-
component field ψ.

A spin one-half particle has two independent states corresponding to the two
allowed values of the z-component of the intrinsic angular momentum Sz =
± h̄

2 . The wave function ψ of a spin one-half particle is a spinor which has two
independent components

ψ(r, t) =

(
ψ(1)(r, t)
ψ(2)(r, t)

)
(4)

These two components can be used to represent two independent basis states.

We conjecture that since a particle with intrinsic spin S has (2S + 1) inde-
pendent basis states, then the wave function should have (2S + 1) independent
components.

A (non-relativistic) spin-one particle should have three independent states
corresponding to the three possible values of the z-component of the intrinsic
angular momentum. From the conjecture, one expects that the wave function
ψ of a spin-one particle should have three components.

ψ(r, t) =




ψ(1)(r, t)
ψ(3)(r, t)
ψ(3)(r, t)


 (5)

This conjecture can be verified by examining the transformational properties of
a vector field under rotations. Under a rotation of the field, the components
of the field are transported in space, and also the direction of the vector field
is rotated. This implies that the components of the transported field have to
be rotated. The rotation of the direction of the field is generated by operators
which turn out to be the intrinsic angular momentum operators. Specifically,
the generators satisfy the commutation relations defining angular momentum,
but also correspond to the subspace with angular momentum one.

2.1 Rotations and Intrinsic Spin

Under the transformation which takes r → r′ = R r, the magnitude of the
scalar field ψ at r is transferred to the point r′. This defines the transformation
ψ → ψ′. The transformed scalar field ψ′ is defined so that its value at r′ has
the same value as ψ(r). That is

ψ′(r′) = ψ(r) (6)
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or equivalently

ψ′(R̂ r) = ψ(r) (7)

The above equation can be used to determine ψ′(r) by using the substitution
r → R̂−1r so

ψ′(r) = ψ(R̂−1r) (8)

If ê is a unit vector along the axis of rotation, the rotation of r through an

r

e x r

e x ( e x r )

ϕ

e

r ( e . r )

Figure 2: A rotation of the vector r through an angle ϕ about an axis ê.

infinitesimal angle δϕ is expressed as

R̂ r = r + δϕ ê ∧ r + . . . (9)

where terms of order δϕ2 have been neglected. Hence, under an infinitesimal

ψ(r)

ψ(R-1r)ψ

x-axis

y-axis

R

r'=R
-1
r

Figure 3: The effect of a rotation R̂ on a scalar field ψ(r).

rotation, the transformation of a scalar wave function can be found from the
Taylor expansion

ψ′(r) = ψ(r − δϕ ê ∧ r)
= ψ(r) − δϕ ( ê ∧ r ) . ∇ ψ(r) + . . .

= ψ(r) − δϕ ( r ∧ ∇ ) . ê ψ(r) + . . .

= ψ(r) − i δϕ

h̄
( ê . L̂ ) ψ(r) + . . .
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= exp

[
− i δϕ

h̄
( ê . L̂ )

]
ψ(r) (10)

where the operator L̂ has been defined as

L̂ = − i h̄ r ∧ ∇ (11)

Therefore, locally, rotations of the scalar field are generated by the orbital an-
gular momentum operator L̂.

Since the operation R̂ is a rotation, it also rotates a vector field ψ(r). Not
only does the rotation transfer the magnitude of ψ(r) to the new point r′ but it
must also rotate the direction of the transferred vector ψ(r). The rotated vector

ψ′(r′) is denoted by R̂ ψ(r). Mathematically, the transformation is expressed

-1

-0.5

0

0.5

-0.50

Figure 4: The effect of a rotation R̂ on a vector field ψ(r). The rotation affects
both the magnitude and direction of the vector.

as
ψ′(r′) = R̂ ψ(r) (12)

or equivalently

ψ′(R̂ r) = R̂ ψ(r) (13)

The above equation can be used to determine ψ′(r) as

ψ′(r) = R̂ ψ(R̂−1r) (14)

The part of the rotational operator designated by R̂ does not affect the posi-
tional coordinates (r) of the vector field, and so can be found by considering
the rotation of the vector field ψ at the origin

R̂ ψ =

(
Î + δϕ ê ∧

)
ψ (15)
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That is, the operator R̂ only produces a mixing of the components of ψ. Hence,
the complete rotational transformation of the vector field can be represented as

ψ′(r) = R̂ ψ(r − δϕ ê ∧ r)
= ψ(r − δϕ ê ∧ r) + δϕ ê ∧ ψ(r − δϕ ê ∧ r)
= ψ(r − δϕ ê ∧ r) + δϕ ê ∧ ψ(r) + . . .

= ψ(r) − i δϕ

h̄
( ê . L̂ ) ψ(r) + δϕ ê ∧ ψ(r) + . . .

= ψ(r) − i δϕ

h̄
( ê . L̂ ) ψ(r) − i δϕ

h̄
( ê . Ŝ ) ψ(r) (16)

where the terms of order (δϕ)2 have been neglected and a vector operator Ŝ has
been introduced. The operator Ŝ only admixes the components of ψµ, unlike
L̂ which only acts on the r dependence of the components. The components of
the three-dimensional vector operator S are expressed as 3 × 3 matrices1, with
matrix elements

(Ŝ(i))j,k = − i h̄ ξi,j,k (18)

where ξi,j,k is the antisymmetric Levi-Civita symbol. The Levi-Civita symbol
is defined by ξi,j,k = 1 if the ordered set (i, j, k) is obtained by an even number
of permutations of (1, 2, 3) and is −1 if it is obtained by an odd number of
permutations, and is zero if two or more indices are repeated. Specifically, the
antisymmetric matrices are given by

Ŝ(1) = h̄




0 0 0
0 0 −i
0 i 0


 (19)

and by

Ŝ(2) = h̄




0 0 i
0 0 0
−i 0 0


 (20)

and finally by

Ŝ(3) = h̄




0 −i 0
i 0 0
0 0 0


 (21)

By using a unitary transform, the above three operators can be transformed
into the standard representation of spin-one operators where S(3) is chosen to
be diagonal. It is easily shown that the components of the matrix operators L̂
and Ŝ satisfy the same type of commutation relations

[ L̂(i) , L̂(j) ] = i h̄ ξi,j,k L̂(k) (22)

1The component of the matrix denoted by

(Ŝ)j,k (17)

denotes the element of Ŝ in the j-th row and k-th column.
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and
[ Ŝ(i) , Ŝ(j) ] = i h̄ ξi,j,k Ŝ(k) (23)

where the repeated index (k) is summed over. The above set of operators
form a Lie algebra associated with the corresponding Lie group of continuous
rotations. Thus, it is natural to identify these operators which arise in the
analysis of transformations in classical physics with the angular momentum
operators of quantum mechanics. In terms of these operators, the infinitesimal
transformation has the form

ψ′(r) ≈ ψ(r) − i δϕ

h̄
ê . ( L̂ + Ŝ ) ψ(r) + . . . (24)

or

ψ′(r) = exp

[
− i δϕ

h̄
ê . ( L̂ + Ŝ )

]
ψ(r) (25)

Thus, the transformation is locally accomplished by

ψ′(r) = exp

[
− i δϕ

h̄
( ê . Ĵ )

]
ψ(r) (26)

where
Ĵ = L̂ + Ŝ (27)

is the total angular momentum. The operator Ŝ is the intrinsic angular mo-
mentum of the vector field ψ. The magnitude of S is found from

Ŝ2 = (Ŝ(1))2 + (Ŝ(2))2 + (Ŝ(3))2 (28)

which is evaluated as

Ŝ2 = 2 h̄2




1 0 0
0 1 0
0 0 1


 (29)

and is the Casimir operator. It is seen that a vector field has intrinsic angular

momentum, with a magnitude given by the eigenvalue of Ŝ2 which is

S ( S + 1 ) h̄2 = 2 h̄2 (30)

hence S = 1. Thus, it is seen that a vector field is associated with an intrinsic
angular momentum of spin one.

2.2 Massless Particles with Spin Zero

First, we shall try and construct the Schrödinger equation describing a massless
uncharged spinless particle. A spinless particle is described by a scalar wave
function, and an uncharged particle is described by a real wave function. The
derivation is based on the energy-momentum relation for a massless particle

E2 − p2 c2 = 0 (31)
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which is quantized by using the substitutions

E → i h̄
∂

∂t
p → p̂ = − i h̄ ∇ (32)

One finds that the real scalar wave function ψ(r, t) satisfies the wave equation

[
1

c2
∂2

∂t2
− ∇2

]
ψ = 0 (33)

since h̄ drops out. This is not a very useful result, since it is a second-order differ-
ential equation in time, and the solution of a second-order differential equation
can only be determined if two initial conditions are given. Usually, the initial
conditions are given by

ψ(r, 0) = f(r)

∂ψ

∂t

∣∣∣∣
t=0

= g(r) (34)

In quantum mechanics, measurements disturb the state of the system and
so it becomes impossible to design two independent measurements which can
uniquely specify two initial conditions for one state. Hence, one has reached
an impasse. Due to this difficulty and since there are no known examples of
massless spinless particles found in nature, this theory is not very useful.

2.3 Massless Particles with Spin One

The wave function of an uncharged spin-one particle is expected to be repre-
sented by a real vector function.

We shall try and factorize the wave equation for the vector E into two first-
order differential equations, each of which requires one boundary condition.
This requires one to specify six quantities. Therefore, one needs to postulate
the existence of two independently measurable fields, E and B. Each of these
fields should satisfy the two wave equations

[
1

c2
∂2

∂t2
− ∇2

]
E = 0 (35)

and [
1

c2
∂2

∂t2
− ∇2

]
B = 0 (36)
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The first-order equations must have the form

i h̄
∂E

∂t
= c

(
a p̂ ∧ E + b p̂ ∧ B

)

i h̄
∂B

∂t
= c

(
d p̂ ∧ B + e p̂ ∧ E

)
(37)

since the left-hand side is a vector, the right-hand side must also be a vector
composed of the operator p̂ and the wave functions. Like Newton’s laws, these
equations must be invariant under time-reversal invariance, t → − t. The
transformation leads to the identification

a = d = 0 (38)

and

b = − e (39)

if one also requires that one of the two fields changes sign under time reversal2.
We shall adopt the convention that the field E retains its sign, so

E → E

B → − B (40)

under time-reversal invariance. On taking the time derivative of the first equa-
tion, one obtains

− h̄2 ∂2E

∂t2
= − c2 b2 p̂ ∧

(
p̂ ∧ E

)
(41)

Likewise, the B field is found to satisfy

− h̄2 ∂2B

∂t2
= − c2 b2 p̂ ∧

(
p̂ ∧B

)
(42)

Thus, one has found the two equations

− h̄2 ∂2E

∂t2
= − c2 b2

[
− p̂2 E + p̂

(
p̂ . E

) ]
(43)

and

− h̄2 ∂2B

∂t2
= − c2 b2

[
− p̂2 B + p̂

(
p̂ . B

) ]
(44)

On substituting the operator p̂ = − i h̄ ∇ , one obtains

∂2E

∂t2
= − c2 b2

[
− ∇2 E + ∇

(
∇ . E

) ]
(45)

2For the non-relativistic Schrödinger equation, time-reversal invariance implies that t →
t′ = −t and ψ → ψ′ = ψ∗.
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and

∂2B

∂t2
= − c2 b2

[
− ∇2 B + ∇

(
∇ . B

) ]
(46)

so h̄ drops out. To reduce these equations to the form of wave equations, one
needs to impose the conditions

∇ . E = 0 (47)

and
∇ . B = 0 (48)

On identifying the coefficients with those of the wave equation, one requires
that

b2 = 1 (49)

Thus, one has arrived at the set of the source-free Maxwell’s equations

1

c

∂E

∂t
= ∇ ∧ B

− 1

c

∂B

∂t
= ∇ ∧ E

∇ . E = 0

∇ . B = 0 (50)

which describe the one-particle Schrödinger equation for a massless spin-one
particle, with the wave function (E,B). These have a form which appears to be
completely classical, since h̄ has dropped out. Furthermore, in the absence of
sources, Maxwell’s equations are invariant under the symmetry transformation
(E,B) → (−B,E).

3 Maxwell’s Equations

Classical Field Theories describe systems in which a very large number of par-
ticles are present. Measurements on systems containing very large numbers of
particles are expected to result in average values, with only very small devia-
tions. Hence, we expect that the subtleties of quantum measurements should be
completely absent in systems that can be described as quantum fields. Classical
Electromagnetism is an example of such a quantum field, in which an infinitely
large number of photons are present.

In the presence of a current density j and a charge density ρ, Maxwell’s
equations assume the forms

∇ ∧ B − 1

c

∂E

∂t
=

4 π

c
j

14



∇ ∧ E +
1

c

∂B

∂t
= 0

∇ . E = 4 π ρ

∇ . B = 0 (51)

The field equations ensure that the sources j and ρ satisfy a continuity equation.

Taking the divergence of the first equation and combining it with the time
derivative of the third, one obtains

∇ .

(
∇ ∧ B

)
− 1

c

(
∂

∂t
∇ . E

)
=

4 π

c
∇ . j

− 1

c

(
∂

∂t
∇ . E

)
=

4 π

c
∇ . j

− 4 π

c

∂ρ

∂t
=

4 π

c
∇ . j (52)

Hence, one has derived the continuity equation

∂ρ

∂t
+ ∇ . j = 0 (53)

which shows that charge is conserved.

3.1 Vector and Scalar Potentials

Counting each component of Maxwell’s equations separately, one arrives at eight
equations for the six components of the unknown fields E and B. As the equa-
tions are linear, this would over-determine the fields. Two of the eight equations
must be regarded as self-consistency equations for the initial conditions on the
fields.

One can solve the two source-free Maxwell equations, by expressing the
electric E and magnetic fields B in terms of the vector A and scalar φ potentials,
via

E = − 1

c

∂A

∂t
− ∇ φ (54)

and
B = ∇ ∧ A (55)

The expressions for B and E automatically satisfy the two source-free Maxwell’s
equations. This can be seen by examining

∇ ∧ E +
1

c

∂B

∂t
= 0 (56)
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which, on substituting the expressions for the electromagnetic fields in terms of
the vector and scalar potentials, becomes

∇ ∧
(

− 1

c

∂A

∂t
− ∇ φ

)
+

1

c

∂

∂t

(
∇ ∧ A

)
= 0 (57)

which is automatically satisfied since

∇ ∧
(

∇ φ

)
= 0 (58)

and the terms involving A cancel since A is analytic. The remaining source-free
Maxwell equation is satisfied, since it has the form

∇ . B = 0 (59)

which reduces to

∇ .

(
∇ ∧ A

)
= 0 (60)

which is identically zero.

Therefore, the six components of E and B have been replaced by the four
quantities A and φ. These four quantities are determined by the Maxwell equa-
tions which involve the sources, which are four in number.

The fields are governed by the set of non-trivial equations which relate A and
φ to the sources j and ρ. When expressed in terms of A and φ, the remaining
non-trivial Maxwell equations become

∇ ∧
(

∇ ∧ A

)
+

1

c

∂

∂t

(
1

c

∂A

∂t
+ ∇ φ

)
=

4 π

c
j

− ∇ .

(
1

c

∂A

∂t
+ ∇ φ

)
= 4 π ρ (61)

but since

∇ ∧
(

∇ ∧ A

)
= ∇

(
∇ . A

)
− ∇2 A (62)

the pair of equations can be written as

(
− ∇2 A +

1

c2
∂2A

∂t2

)
+ ∇

(
∇ . A +

1

c

∂φ

∂t

)
=

4 π

c
j

− ∇2 φ − 1

c

∂

∂t

(
∇ . A

)
= 4 π ρ (63)

We shall make use of gauge invariance to simplify these equations.
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3.2 Gauge Invariance

The vector and scalar potentials are defined as the solutions of the coupled
partial differential equations describing the electric and magnetic fields

E = − 1

c

∂A

∂t
− ∇ φ (64)

and
B = ∇ ∧ A (65)

Hence, one expects that the solutions are only determined up to functions of
integration. That is the vector and scalar potentials are not completely deter-
mined, even if the electric and magnetic fields are known precisely. It is possible
to transform the vector and scalar potentials, in a way such that the E and B
fields remain invariant. These transformations are known as gauge transforma-
tions of the second kind3.

In particular, one can perform the transform

A → A′ = A − ∇ Λ

φ → φ′ = φ +
1

c

∂Λ

∂t
(66)

where Λ is an arbitrary analytic function and this transformation leaves the E
and B fields invariant. The magnetic field is seen to be invariant since

B′ = ∇ ∧ A′

= ∇ ∧
(
A − ∇ Λ

)

= ∇ ∧ A

= B (67)

where the identity

∇ ∧
(

∇ Λ

)
= 0 (68)

valid for any scalar function Λ has been used. The electric field is invariant,
since the transformed electric field is given by

E′ = − 1

c

∂A′

∂t
− ∇ φ′

3The transformation

ψ → ψ′ = ψ exp

[
i χ

h̄

]

p → p̂′ = − i h̄ ∇ − ∇ χ

used in quantum mechanics is known as a gauge transformation of the first kind.
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= − 1

c

∂

∂t

(
A − ∇ Λ

)
− ∇

(
φ +

1

c

∂Λ

∂t

)

= − 1

c

∂A

∂t
− ∇ φ

= E (69)

In the above derivation, it has been noted that the order of the derivatives can
be interchanged,

∇ ∂Λ

∂t
=

∂

∂t
∇ Λ (70)

since Λ is an analytic scalar function.

The gauge invariance allows us the freedom to impose a gauge condition
which fixes the gauge. Two gauge conditions which are commonly used are the
Lorenz gauge

∇ . A +
1

c

∂φ

∂t
= 0 (71)

and the Coulomb or radiation gauge

∇ . A = 0 (72)

The Lorenz gauge is manifestly Lorentz invariant, whereas the Coulomb gauge
is frequently used in cases where the electrostatic interactions are important.

It is always possible to impose one or the other of these gauge conditions. If
the vector and scalar potentials (φ,A) do not satisfy the gauge transformation,
then one can perform a gauge transformation so that the transformed fields
(φ′, A′) satisfy the gauge condition.

For example, if the fields (φ,A) do not satisfy the Lorenz gauge condition,
since

∇ . A +
1

c

∂φ

∂t
= χ(r, t) (73)

where χ is non-zero, then one can perform the gauge transformation to the new
fields (φ′, A′)

∇ . A′ +
1

c

∂φ′

∂t
= ∇ . A − ∇2 Λ +

1

c

∂φ

∂t
+

1

c2
∂2Λ

∂t2

= χ −
(

∇2 − 1

c2
∂2

∂t2

)
Λ (74)

The new fields satisfy the Lorentz condition if one chooses Λ to be the solution
of the wave equation

(
∇2 − 1

c2
∂2

∂t2

)
Λ = χ(r, t) (75)
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This can always be done, since the driven wave equation always has a solution.
Hence, one can always insist that the fields satisfy the gauge condition

∇ . A′ +
1

c

∂φ′

∂t
= 0 (76)

Alternatively, if one is to impose the Coulomb gauge condition

∇ . A′ = 0 (77)

one can use Poisson’s equations to show that one can always find a Λ such that
the Coulomb gauge condition is satisfied4.

In the Lorenz gauge, the equations of motion for the electromagnetic field
are given by

[
− ∇2 +

1

c2
∂2

∂t2

]
A =

4 π

c
j

[
− ∇2 +

1

c2
∂2

∂t2

]
φ = 4 π ρ (78)

Hence, A and φ both satisfy the wave equation, where j and ρ are the sources.
The solutions are waves which travel with velocity c.

In the Coulomb gauge, the fields satisfy the equations
[

− ∇2 +
1

c2
∂2

∂t2

]
A =

4 π

c
j − 1

c

∂

∂t
∇ φ

− ∇2 φ = 4 π ρ (79)

The second equation is Poisson’s equation and has solutions given by

φ(r, t) =

∫
d3r′

ρ(r′, t)

| r − r′ | (80)

which is an “instantaneous” Coulomb interaction. However, the force from the
electric field E is not transmitted instantaneously from r′ to r, since there is a
term in the equation for A which compensates for the “instantaneous” interac-
tion described by φ.

Exercise:

Consider the case of a uniform magnetic field of magnitude B which is ori-
ented along the z-axis. Using the Coulomb gauge, find a general solution for
the vector potential.

4Imposing a gauge condition is insufficient to uniquely determine the vector potential A,
since in the case of the Coulomb gauge, the vector potential is only known up to the gradient
of any harmonic function Λ.
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4 Relativistic Formulation of Electrodynamics

Physical quantities can be classified as either being scalars, vectors or tensors
according to how they behave under transformations. Scalars are invariant un-
der Lorentz transformations, and all vectors transform in the same way.

4.1 Lorentz Scalars and Vectors

The space-time four-vector has components given by the time t and the three
space coordinates (x(1), x(2), x(3)) which label an event. The zeroth-component
of the four-vector x(0) (the time component) is defined to be ct, where c is the
velocity of light, in order that all the components have the dimensions of length.
In Minkowski space, the four-vector is defined as having contravariant compo-
nents xµ = (ct, x(1), x(2), x(3)), while the covariant components are denoted
by xµ = (ct,−x(1),−x(2),−x(3)). The invariant length is given by the scalar
product

xµ xµ = ( c t )2 − ( x(1) )2 − ( x(2) )2 − ( x(3) )2 (81)

where repeated indices are summed over. The invariant length xµ xµ is related
to the proper time τ . This definition can be generalized to the scalar product
of two arbitrary four-vectors Aµ and Bµ as

Aµ Bµ = A(0) B(0) − A(1) B(1) − A(2) B(2) − A(3) B(3) (82)

In special relativity, the four-vector scalar product can be written in terms of
the product of the time-index components and the scalar product of the usual
three-vectors as

Aµ Bµ = A(0) B(0) − A . B (83)

The Lorentz invariant four-vector scalar product can also be written as

Aµ Bµ = gµ,ν A
µ Bν (84)

where gµ,ν is the Minkowski metric. These equations imply that

Aµ = gµ,ν A
ν (85)

That is, the metric tensor transforms contravariant components to covariant
components. The Minkowski metric can be expressed as a four by four matrix

gµ,ν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (86)
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where µ labels the rows and ν labels the columns. If the four-vectors are ex-
pressed as column-vectors

Aν =




A(0)

A(1)

A(2)

A(3)


 (87)

and

Aν =




A(0)

A(1)

A(2)

A(3)


 (88)

then the transformation from contravariant to covariant components can be
expressed as




A(0)

A(1)

A(2)

A(3)


 =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







A(0)

A(1)

A(2)

A(3)


 (89)

The inverse transform is expressed as

Aµ = gµ,ν Aν (90)

where, most generally, gµ,ν is the inverse metric

gµ,ν = ( gµ,ν )−1 (91)

In our particular case of Cartesian coordinates in (flat) Minkowski space, the
inverse metric coincides with the metric.

Example: Covariant and Contravariant Components of a Euclidean

Vector

Consider a two-dimensional Euclidean space. However, instead of simply
considering Cartesian axes, consider two unit vectors ê1 and ê2 which are not
co-linear

ê1 . ê2 = cos θ (92)

A general vector X can be expressed in terms of its contravariant components
(X(1), X(2)) via

X = X(1) ê1 + X(2) ê2 (93)

The scalar product of two vectors X and Y can be evaluated by standard means
in terms of their contravariant components. The result can be expressed in terms
of a matrix product as

X . Y =
(
X(1) X(2)

) ( 1 cos θ
cos θ 1

) (
Y (1)

Y (2)

)
(94)
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involving the metric tensor gµ,ν
(

1 cos θ
cos θ 1

)
(95)

Likewise, the length |X| of the vector can be expressed as

|X|2 =
(
X(1) X(2)

) ( 1 cos θ
cos θ 1

) (
X(1)

X(2)

)
(96)

The covariant components of the vector (X(1), X(2)) are found from the con-
travariant components by the action of the metric tensor

(
X(1)

X(2)

)
=

(
1 cos θ

cos θ 1

) (
X(1)

X(2)

)
(97)

The covariant components of any vector can be found geometrically by dropping
normals from the tip of the vector to the axes. The intersection of a normal with
its corresponding axis determines the covariant component. For a Cartesian co-
ordinate system, the covariant components are identical to the contravariant
components.

A familiar example of the Lorentz invariant scalar product involves the mo-
mentum four-vector with contravariant components pµ ≡ (E

c
, p(1), p(2), p(3))

where E is the energy. The covariant components of the momentum four-vector
are given by pµ ≡ (E

c
,−p(1),−p(2),−p(3)) and the scalar product defines the

invariant mass m via

pµ pµ =

(
E

c

)2

− p2 = m2 c2 (98)

Another scalar product which is frequently encountered is pµ xµ which is given
by

pµ xµ = E t − p . x (99)

This scalar product is frequently seen in the description of planes of constant
phase of waves.

4.2 Covariant and Contravariant Derivatives

We shall now generalize the idea of the differential operator ∇ to Minkowski
space. The generalization we consider, will have to be modified when the metric
varies in space, i.e. when gµ,ν depends on the coordinates xµ of the points in
space.

Consider a scalar function φ(xµ) defined in terms of the contravariant coor-
dinates xµ. Under an infinitesimal translation aµ

xµ → xµ′ = xµ + aµ (100)
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the scalar function φ(xµ′) is still a scalar. Therefore, on performing a Taylor
expansion, one has

φ(xµ + aµ) = φ(xµ) + aµ
∂

∂xµ
φ(xµ) + . . . (101)

which is also a scalar. Therefore, the quantity

aµ
∂

∂xµ
φ(xµ) (102)

is a scalar and can be interpreted as a scalar product between the contravariant
vector displacement aµ and the covariant gradient

∂

∂xµ
φ(xµ) (103)

The covariant gradient can be interpreted in terms of a covariant derivative

∂µ =
∂

∂xµ

=

(
1

c

∂

∂t
,

∂

∂x(1)
,

∂

∂x(2)
,

∂

∂x(3)

)

=

(
1

c

∂

∂t
, ∇

)
(104)

Likewise, one can introduce the contravariant derivative as

∂µ =
∂

∂xµ

=

(
1

c

∂

∂t
, − ∂

∂x(1)
, − ∂

∂x(2)
, − ∂

∂x(3)

)

=

(
1

c

∂

∂t
, − ∇

)
(105)

These covariant and contravariant derivative operators are useful in making
relativistic transformational properties explicit. For example, if one defines the
four-vector potential Aµ via

Aµ =

(
φ , A(1) , A(2) , A(3)

)

=

(
φ , A

)
(106)

then the Lorenz gauge condition can be expressed as

∂µA
µ =

1

c

∂φ

∂t
+ ∇ . A = 0 (107)
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which is of the form of a Lorentz scalar. Likewise, if one introduces the current
density four-vector jµ with contravariant components

jµ =

(
c ρ , j(1) , j(2) , j(3)

)

=

(
c ρ , j

)
(108)

then the condition for conservation of charge can be written as

∂ρ

∂t
+ ∇ . j = 0

∂µj
µ = 0 (109)

which is a Lorentz scalar. Also, the gauge transformation can also be compactly
expressed in terms of a transformation of the contravariant vector potential

Aµ → Aµ′ = Aµ + ∂µΛ (110)

where Λ is an arbitrary scalar function. The gauge transformation reduces to

φ → φ′ = φ +
1

c

∂Λ

∂t
A → A′ = A − ∇ Λ (111)

Similarly, one can use the contravariant notation to express the quantization
conditions

E → i h̄
∂

∂t
p → − i h̄ ∇ (112)

in the form
pµ → i h̄ ∂µ (113)

One can also express the wave equation operator in terms of the scalar product
of the contravariant and covariant derivative operators

∂µ ∂µ =
1

c2
∂2

∂t2
− ∇2 (114)

Hence, in the Lorenz gauge, the equations of motion for the four-vector potential
Aµ can be expressed concisely as

∂ν∂νA
µ =

4 π

c
jµ (115)

However, these equations are not gauge invariant.
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4.3 Lorentz Transformations

A Lorentz transform can be defined as any transformation which leaves the
scalar product of two four-vectors invariant. Under a Lorentz transformation,
an arbitrary four-vector Aµ is transformed to Aµ′, via

Aµ′ = Λµν A
ν (116)

where the repeated index ν is summed over. The inverse transformation is
represented by

Aµ = ( Λ−1 )µν A
ν ′ (117)

Since the scalar product is to be relativistically invariant, one requires that

Aµ′ Bµ
′ = Aµ Bµ (118)

The left hand-side is evaluated as

Aµ′ Bµ
′ = Λµν A

ν gµ,σ Λστ B
τ (119)

If the scalar product is to be invariant, the transform must satisfy the condition

gν,τ = Λµν gµ,σ Λστ (120)

If this condition is satisfied, then Λµν is a Lorentz transformation.

Like the metric tensor, the Lorentz transformation can be expressed as a
four by four matrix

Λµν =




Λ0
0 Λ0

1 Λ0
2 Λ0

3

Λ1
0 Λ1

1 Λ1
2 Λ1

3

Λ2
0 Λ2

1 Λ2
2 Λ2

3

Λ3
0 Λ3

1 Λ3
2 Λ3

3


 (121)

where µ labels the rows and ν labels the columns. In terms of the matrices, the
condition that Λ is a Lorentz transformation can be written as

g = ΛT g Λ (122)

where ΛT is the transpose of the matrix Λ, i.e.

( ΛT )νµ = Λµν (123)

A specific transformation, which is the transformation from a stationary
frame to a reference frame moving along the x(1) axis with velocity v, is repre-
sented by the matrix

Λµν =
1√

1 − v2

c2




1 − v
c

0 0
− v

c
1 0 0

0 0
√

1 − v2

c2
0

0 0 0
√

1 − v2

c2




(124)

25



x(1)

x' (1)

x(2)

x' (2)

x(3)

x' (3)

v

O
O'

Figure 5: Two inertial frames of reference moving with a constant relative ve-
locity with respect to each other.

which can be seen to satisfy the condition

gν,τ = Λµν gµ,σ Λστ (125)

which has to be satisfied if Λµν is to represent a Lorentz transformation.

x(3)

x(1)

x(2)

O

x' (1)

x' (2)

φ

Figure 6: Two inertial frames of reference rotated with respect to each other.

Likewise, the rotation through an angle ϕ about the x(3)-axis represented by

Λµν =




1 0 0 0
0 cosϕ sinϕ 0
0 − sinϕ cosϕ 0
0 0 0 1


 (126)

is a Lorentz transformation, since it also satisfies the condition eqn(120).

Since the boost velocity v and the angles of rotation ϕ are continuous, one
could consider transformations where these quantities are infinitesimal. Such
infinitesimal transformations can be expanded as

Λµν = δµν + ǫµν + . . . (127)
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where δµν is the Kronecker delta function representing the identity transforma-
tion5 and ǫµν is a matrix which is first-order in the infinitesimal parameter. The
condition on ǫµν required for Λµν to be a Lorentz transform is given by

0 = ǫµν gµ,τ + gν,σ ǫ
σ
τ (129)

or, on using the metric tensor to lower the indices, one has

ǫτ,ν = − ǫν,τ (130)

Hence, an arbitrary infinitesimal Lorentz transformation is represented by an
arbitrary antisymmetric 4 × 4 matrix ǫτ,ν . This matrix occurs in the expression
for the transformation matrix

Λτ,ν = gτ,ν + ǫτ,ν + . . . (131)

which transforms the contravariant components of a vector into covariant com-
ponents. It follows that, if ν and τ are either both space-indices or are both
time-indices, the components of the finite Lorentz transformation matrix Λτ ν
are antisymmetric on interchanging τ and ν. Whereas if the pair of indices ν
and τ are mixed space and time-indices, the components of the transformation
matrix Λτ ν are symmetric.

Exercise:

Show that a Lorentz transformation from the unprimed rest frame to the
primed reference frame moving along the x(3)-axis with constant velocity v, can
be considered as a rotation through an imaginary angle θ = i χ in space-time,
where i c t plays the role of a spatial coordinate. Find the equation that deter-
mines χ.

4.4 Invariant Form of Maxwell’s Equations

In physics, one strives to write the fundamental equations in forms which are
independent of arbitrary choices, such as the coordinate system or the choice of
gauge condition. However, in particular applications it is expedient to choose
the coordinate system and gauge condition in ways that highlight the symme-
tries and simplify the mathematics.

We shall introduce an antisymmetric field tensor Fµ,ν which is gauge in-
variant. That is, the form of Fµ,ν is independent of the choice of gauge. We

5The student more adept in index-gymnastics may consider the advantages and disadvan-
tages of replacing the Kronecker delta function δµ

ν by gµ
ν , since

δµ
ν ≡ gµ

ν = gµ,ρ gρ,ν = δµ,ν

(128)
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shall express the six ( (16−4)
2 = 6) independent components of the antisymmetric

tensor in terms of the four-vector potential Aµ and the contravariant derivative
as

Fµ,ν = ∂µAν − ∂νAµ (132)

so the tensor is antisymmetric

Fµ,ν = − F ν,µ (133)

It is immediately obvious that Fµ,ν is invariant under gauge transformations

Aµ → Aµ′ = Aµ + ∂µΛ (134)

since
∂µ∂νΛ − ∂ν∂µΛ ≡ 0 (135)

Alternatively, explicit evaluation of Fµ,ν shows that the six independent com-
ponents can be expressed in terms of the electric and magnetic fields, which are
gauge invariant. Components of the field tensor are explicitly evaluated from
the definition as

F 0,1 =
1

c

∂

∂t
A(1) − ∂

∂x1
φ

=
1

c

∂

∂t
A(1) +

∂

∂x(1)
φ

= − E(1) (136)

and

F 1,2 =
∂

∂x1
A(2) − ∂

∂x2
A(1)

= − ∂

∂x(1)
A(2) +

∂

∂x(2)
A(1)

= − B(3) (137)

The non-zero components of the field tensor are related to the spatial compo-
nents (i, j, k) of the electromagnetic field by

F i,0 = E(i) (138)

and
F i,j = − ξi,j,k B(k) (139)

where ξi,j,k is the Levi-Civita symbol. Therefore, the field tensor can be ex-
pressed as the matrix

Fµ,ν =




0 −E(1) −E(2) −E(3)

E(1) 0 −B(3) B(2)

E(2) B(3) 0 −B(1)

E(3) −B(2) B(1) 0


 (140)
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Maxwell’s equations can be written in terms of the field tensor as

∂νF
ν,µ =

4 π

c
jµ (141)

For µ = i, the field equations become

1

c

∂

∂t
F 0,i +

∂

∂xj
F j,i =

4 π

c
j(i)

− 1

c

∂

∂t
E(i) + ξi,j,k

∂

∂xj
B(k) =

4 π

c
j(i)

− 1

c

∂

∂t
E(i) +

(
∇ ∧ B

)(i)

=
4 π

c
j(i) (142)

while for µ = 0 the equations reduce to

∂

∂xj
F j,0 =

4 π

c
j(0)

∂

∂xj
E(j) = 4 π ρ

(
∇ . E

)
= 4 π ρ (143)

since F 0,0 vanishes. The above field equations are the two Maxwell’s equations
which involve the sources of the fields. The remaining two sourceless Maxwell
equations are expressed in terms of the antisymmetric field tensor as

∂µFν,ρ + ∂ρFµ,ν + ∂νFρ,µ = 0 (144)

where the indices are permuted cyclically. These internal equations reduce to

∇ . B = 0 (145)

when µ, ν and ρ are the space indices (1, 2, 3). When one index taken from the
set (µ, ν, ρ) is the time index, and the other two are different space indices, the
field equations reduce to

1

c

∂B

∂t
+ ∇ ∧ E = 0 (146)

If two indices are repeated, the above equations are satisfied identically, due to
the antisymmetry of the field tensor.

Alternatively, when expressed in terms of the vector potential, the field equa-
tions of motion are equivalent to the wave equations

∂ν∂
νAµ − ∂µ

(
∂νA

ν

)
=

4 π

c
jµ (147)
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Since four-vectors Aµ and jµ transform as

Aµ′ = Λµν A
ν

jµ′ = Λµν j
ν (148)

and likewise for the contravariant derivative

∂µ′ = Λµν ∂
ν (149)

then one can conclude that the field tensor transforms as

Fµ,ν ′ = Λµσ Λντ F
σ,τ (150)

This shows that, under a Lorentz transform, the electric and magnetic fields
(E,B) transform into themselves.

Exercise:

Show explicitly, how the components of the electric and magnetic fields
change, when the coordinate system is transformed from the unprimed refer-
ence frame to a primed reference frame which is moving along the x(3)-axis with
constant velocity v.

5 The Simplest Classical Field Theory

Consider a string stretched along the x-axis, which can support motion in the
y-direction. We shall consider the string to be composed of mass elements
mi = ρ a, that have fixed x-coordinates denoted by xi and are separated by
a distance a. The mass elements can be displaced along the y-axis. The y-
coordinate of the i-th mass element is denoted by yi. We shall assume that the
string satisfies the spatial boundary conditions at each end. We shall assume
that the string satisfies periodic boundary conditions, so that y0 = yN+1.

The Lagrangian for the string is a function of the coordinates yi and the
velocities dyi

dt
. The Lagrangian is given by

L =
i=N∑

i=1

[
mi

2

(
dyi
dt

)2

− κi
2

(
yi − yi−1

)2 ]
(151)

The first term represents the kinetic energy of the mass elements, and the second
term represents the increase in the elastic potential energy of the section of the
string between the i-th and (i− 1)-th element as the string is stretched from its
equilibrium position. This follows since, ∆si the length of the section of string
between mass element i and i− 1 in a non-equilibrium position is given by

∆s2i = ( xi − xi−1 )2 + ( yi − yi−1 )2

= a2 + ( yi − yi−1 )2 (152)
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Figure 7: A string composed of a discrete set of particles of masses mi sepa-
rated by a distance a along the x-axis. The particles can be moved from their
equilibrium positions by displacements yi transverse to the x-axis.

since the x-coordinates are fixed. Thus, if one assumes that the spring constant
for the stretched string segment is κi, then the potential energy of the segment
is given by

Vi =
κi
2

( yi − yi−1 )2 (153)

We shall consider the case of a uniform string for which κi = κ for all i.

The equations of motion are obtained by minimizing the action S which is
defined as the integral

S =

∫ T

0

dt L (154)

between an initial configuration at time 0 and a final configuration at time T .
The action is a functional of the coordinates yi and the velocities dyi

dt
, which are

to be evaluated for arbitrary functions yi(t). The string follows the trajectory
yexi (t) which minimizes the action, which travels between the fixed initial value
yi(0) and the final value yi(T ). We shall represent the deviation of an arbitrary
trajectory yi(t) from the extremal trajectory by δyi(t), then

δyi(t) = yi(t) − yexi (t) (155)

The action can be expanded in powers of the deviations δyi as

S = S0 + δ1S + δ2S + . . . (156)

where S0 is the action evaluated for the extremal trajectories. The first-order
deviation found by varying δyi is given by

δ1S =

∫ T

0

dt
i=N∑

i=1

[
mi

(
dδyi
dt

) (
dyexi
dt

)
− κ δyi

(
yexi − yexi−1

)
+ κ δyi

(
yexi+1 − yexi

) ]

(157)
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in which yi(T ) and dyi

dt
are to be evaluated for the extremal trajectory. Since

the trajectory which the string follows minimizes the action, the term δ1S must
vanish for an arbitrary variation δyi. We can eliminate the time derivative of
the deviation by integrating by parts with respect to t. This yields

δ1S =

∫ T

0

dt
i=N∑

i=1

[
− mi δyi

d

dt

(
dyexi
dt

)
− κ δyi

(
yexi − yexi−1

)
+ κ δyi

(
yexi+1 − yexi

) ]

+
∑

i

mi δyi(t)

(
dyexi
dt

)∣∣∣∣
T

0

(158)

The boundary term vanishes since the initial and final configurations are fixed,
so

δyi(T ) = δyi(0) = 0 (159)

Hence the first-order variation of the action reduces to

δ1S =

∫ T

0

dt
i=N∑

i=1

δyi

[
− mi

d

dt

(
dyexi
dt

)
− κ

(
2 yexi − yexi−1 − yexi+1

) ]

(160)
The linear variation of the action vanishes for an arbitrary δyi(t), if the term in
the square brackets vanishes

mi

d

dt

(
dyexi
dt

)
+ κ

(
2 yexi − yexi−1 − yexi+1

)
= 0 (161)

Thus, out of all possible trajectories, the physical trajectory yexi (t) is determined
by the equation of motion

mi

d

dt

(
dyi
dt

)
= − κ

(
2 yi − yi−1 − yi+1

)
(162)

The momentum pi which is canonically conjugate to yi is determined by

pi =

(
∂L

∂(dyi

dt
)

)
(163)

which yields the momentum as

pi = mi

dyi
dt

(164)

The Hamiltonian is defined as the Legendre transform of L, so

H =
∑

i

pi
dyi
dt

− L (165)
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The Hamiltonian is only a function of the pairs of canonically conjugate mo-
menta pi and coordinates yi. This can be seen, considering infinitesimal changes
in yi,

dyi

dt
and pi. The resulting infinitesimal change in the Hamiltonian dH is

expressed as

dH =
i=N∑

i=1

[
dpi

dyi
dt

+ pi d(
dyi
dt

) −
(

∂L

∂(dyi

dt
)

)
d(
dyi
dt

) −
(
∂L

∂yi

)
dyi

]

=
i=N∑

i=1

[
dpi

dyi
dt

−
(
∂L

∂yi

)
dyi

]
(166)

since, the terms proportional to the infinitesimal change d(dyi

dt
) vanish identi-

cally, due to the definition of pi. From this, one finds

∂H

∂pi
=

dyi
dt

(167)

and
∂H

∂yi
= −

(
∂L

∂yi

)
(168)

Therefore, the Hamiltonian is only a function of the pairs of canonically
conjugate variables pi and yi. The Hamiltonian is given by

H =
i=N∑

i=1

[
p2
i

2 mi

+
κi
2

(
yi − yi−1

)2 ]
(169)

When expressed in terms of the Hamiltonian, the equations of motion have the
form

dyi
dt

=
∂H

∂pi
dpi
dt

= − ∂H

∂yi
(170)

The Hamilton equations of motion reduce to

dyi
dt

=
pi
mi

dpi
dt

= − κi

(
yi − yi−1

)
+ κi+1

(
yi+1 − yi

)
(171)

for each i value N ≥ i ≥ 1.

One can define the Poisson brackets of two arbitrary quantities A and B in
terms of derivatives with respect to the canonically conjugate variables

{
A , B

}
=

i=N∑

i=1

[
∂A

∂yi

∂B

∂pi
− ∂B

∂yi

∂A

∂pi

]
(172)
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The Poisson bracket is antisymmetric in A and B

{
A , B

}
= −

{
B , A

}
(173)

The Poisson brackets of the canonically conjugate variables are given by

{
pi , yj

}
= − δi,j (174)

and {
pi , pj

}
=

{
yi , yj

}
= 0 (175)

We shall show how energy is conserved by considering a finite segment of
the string. For example, we shall consider the segment of the string consisting
of the i-th mass element and the string which connects the i-th and (i − 1)-th
mass element. The energy of this segment will be described by Hi, where

Hi =
ρ a

2

(
dyi
dt

)2

+
κ

2

(
yi − yi−1

)2

(176)

The rate of increase energy in this segment is given by

dHi

dt
= ρ a

(
d2yi
dt2

) (
dyi
dt

)
+ κ

(
dyi
dt

) (
yi − yi−1

)
− κ

(
dyi−1

dt

) (
yi − yi−1

)

(177)
One can use the equation of motion to eliminate the acceleration term, leading
to

dHi

dt
= κ

(
dyi
dt

) (
yi+1 − yi

)
− κ

(
dyi−1

dt

) (
yi − yi−1

)
(178)

The increase in energy of this segment, per unit time, is clearly given by the
difference of the quantity

Pi = − κ

(
dyi
dt

) (
yi+1 − yi

)
(179)

at the front end of the segment and Pi−1 at the back end of the segment. Since,
from continuity of energy, the rate of increase in the energy of the segment must
equal the net inflow of energy into the segment, one can identify Pi as the flux
of energy flowing out of the i-th into the (i+ 1)-th segment.
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5.1 The Continuum Limit

The displacement of each element of the string can be expressed as a function
of its position, via

yi = y(xi) (180)

where each segment has length a, so that xi+1 = xi + a. The displacement
y(xi+1) can be Taylor expanded about xi as

y(xi+1) = y(xi) + a
∂y

∂x

∣∣∣∣
xi

+
a2

2!

∂2y

∂x2

∣∣∣∣
xi

+ . . . (181)

We intend to take the limit a→ 0, so that only the first few terms of the series
need to be retained. The summations over i are to be replaced by integrations

N∑

i=1

→ 1

a

∫ L

0

dx (182)

The tension in the string T is given by

T = κ a (183)

and this has to be kept constant when the limit a→ 0 is taken.

In the continuum limit, the Lagrangian L can be expressed as an integral of
the Lagrangian density L as

L =

∫ L

0

dx L (184)

where

L =
1

2

[
ρ

(
dy

dt

)2

− κ a

(
∂y

∂x

)2 ]
(185)

The equations of motion are found from the extrema of the action

S =

∫ T

0

dt

∫ L

0

dx L (186)

It should be noted, that in S time and space are treated on the same footing
and that L is a scalar quantity.

In the continuum limit, the Hamiltonian is given by

H =

∫ L

0

dx H (187)
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where the Hamiltonian density H is given by

H =
1

2

[
ρ

(
dy

dt

)2

+ κ a

(
∂y

∂x

)2 ]
(188)

and the energy flux P is given by

P = − κ a

(
dy

dt

) (
∂y

∂x

)
(189)

The condition of conservation of energy is expressed as the continuity equation

dH
dt

+
∂P
∂x

= 0 (190)

5.2 Normal Modes

The solutions of the equations of motion are of the form of a (real) superposition
of plane waves

ψk(x) =
1√
L

exp

[
i ( k x − ω t )

]
(191)

The above expression satisfies the wave equation if the frequency ω satisfies the
dispersion relation

ω2
k = v2 k2 (192)

The above dispersion relation yields both positive and negative frequency solu-
tions. If the plane-waves are to satisfy periodic boundary conditions, k must be
quantized so that

kn =
2 π

L
n (193)

for integer n. The positive-frequency solutions shall be written as

ψk(x) =
1√
L

exp

[
i ( kn x − ωn t )

]
(194)

and the negative frequency solutions as

ψ∗
−k(x) =

1√
L

exp

[
i ( kn x + ωn t )

]
(195)

These solutions form an orthonormal set since

∫ L

0

dx ψ∗
k′(x) ψk(x) = δk′,k (196)

Hence, a general solution can be written as

y(x) =
∑

k

(
ck(0) ψk(x) + c∗−k(0) ψ∗

−k(x)

)
(197)
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where the ck are arbitrary complex numbers that depend on k. If the time
dependence of the ψk(x) is absorbed into the complex functions ck via

ck(t) = ck(0) exp

[
− i ωk t

]
(198)

then one has

y(x) =
1√
L

∑

k

(
ck(t) + c∗−k(t)

)
exp

[
i k x

]
(199)

which is purely real. Thus, the field y(x) is determined by the amplitudes of
the normal modes, i.e. by ck(t). The time-dependent amplitude ck(t) satisfies
the equation of motion

d2ck
dt2

= − ω2
k ck (200)

and, therefore, behaves like a classical harmonic oscillator. To quantize this
classical field theory, one needs to quantize these harmonic oscillators.

The Hamiltonian is expressed as

H =
1

2 a

∫ L

0

dx

[
1

ρ a
p(x)2 + κ a2

(
∂y(x)

∂x

)2 ]
(201)

On substituting y(x) in the form

y(x) =
1√
L

∑

k

(
ck(t) + c∗−k(t)

)
exp

[
i k x

]
(202)

and

p(x) =
ρ a√
L

∑

k

(
dck
dt

+
dc∗−k
dt

)
exp

[
i k x

]
(203)

then after integrating over x, one finds that the energy has the form

H =
ρ

2

∑

k

(
dc−k
dt

+
dc∗k
dt

) (
dck
dt

+
dc∗−k
dt

)

+
κ a

2

∑

k

k2

(
c−k(t) + c∗k(t)

) (
ck(t) + c∗−k(t)

)
(204)

Furthermore, on using the time-dependence of the Fourier coefficients ck(t), one
has

H = − ρ

2

∑

k

ω2
k

(
c−k(t) − c∗k(t)

) (
ck(t) − c∗−k(t)

)

+
κ a

2

∑

k

k2

(
c−k(t) + c∗k(t)

) (
ck(t) + c∗−k(t)

)
(205)
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but the frequency is given by the dispersion relation

ω2
k = v2 k2 =

(
κ a

ρ

)
k2 (206)

Therefore, the expression for the Hamiltonian simplifies to

H = ρ
∑

k

ω2
k

(
c∗k(t) ck(t) + c−k(t) c

∗
−k(t)

)

= ρ
∑

k

ω2
k

(
c∗k(0) ck(0) + c−k(0) c∗−k(0)

)
(207)

which is time-independent, since the time-dependent phase factors cancel out.
Thus, one can think of the energy as a function of the variables ck and c∗−k.
Since the Hamiltonian is strictly expressed in terms of canonically conjugate co-
ordinates and momenta, one should examine the Poisson brackets of ck and c∗−k.

The variables y(xi) and p(xj) have the Poisson brackets
{
p(xi) , y(xj)

}
= − δi,j

{
p(xi) , p(xj)

}
=

{
y(xi) , y(xj)

}
= 0 (208)

Due to the orthogonality properties of the plane-waves, one has
(
ck + c∗−k

)
≈ a√

L

∑

i

y(xi) exp

[
− i k xi

]
(209)

and also

− i ωk′ ρ a

(
ck′ − c∗−k′

)
≈ a√

L

∑

j

p(xj) exp

[
− i k′ xj

]
(210)

These relations are simply the results of applying the inverse Fourier transform
to y(x) and p(x). One can find the Poisson brackets relations between ck and
c∗k from

− i ωk′ ρ

{ (
ck′ − c∗−k′

)
,

(
ck + c∗−k

) }

= − a

L

∑

i,j

{
p(xi) , y(xj)

}
exp

[
− i ( k xi + k′ xj )

]

= +
a

L

∑

i,j

δi,j exp

[
− i ( k xi + k′ xj )

]

= +
a

L

∑

i

exp

[
− i ( k + k′ ) xi

]

= + δk+k′ (211)
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Likewise, one can obtain similar expressions for the other commutation relations.
This set of equations can be satisfied by setting

{
c∗k′ , ck

}
=

i

2 ωk ρ
δk,k′ (212)

and {
c∗k′ , c

∗
k

}
=

{
ck′ , ck

}
= 0 (213)

The above set of Poisson brackets can be recast in a simpler form by defining

ck =
1√

2 ωk ρ
ak (214)

etc., so that the Poisson brackets reduce to

{
a∗k′ , ak

}
= i δk,k′ (215)

and {
a∗k′ , a

∗
k

}
=

{
ak′ , ak

}
= 0 (216)

where the non-universal factors have cancelled out.

5.3 Rules of Canonical Quantization

The first rule of Canonical Quantization states, “Physical quantities should be
represented by operators”. Hence ak and a∗k should be replaced by the operators

âk and â†k. The second rule of Canonical Quantization states, “Poisson Brackets
should be replaced by Commutators”. Hence,

i h̄

{
A , B

}
→ [ Â , B̂ ] (217)

So one has
[ â†k′ , âk ] = − h̄ δk,k′ (218)

and
[ â†k′ , â

†
k ] = [ âk′ , âk ] = 0 (219)

To get rid of the annoying h̄ in the commutator, one can set

âk =
√
h̄ b̂k

â†k =
√
h̄ b̂†k (220)

Whether it was noted or not, b̂†k is the Hermitean conjugate of b̂k. The Her-
mitean relation can proved by taking the Hermitean conjugate of ŷ(xi), and
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noting that the third rule of quantization states, “Measurable quantities are to
replaced by Hermitean operators”. Therefore, the operator

ŷ(x) =
1√
L

∑

k

√
h̄

2 ρ ωk

(
b̂k(t) + b̂†−k(t)

)
exp

[
i k x

]
(221)

must be Hermitean. What this means is, the Hermitean conjugate

ŷ†(x) =
1√
L

∑

k

√
h̄

2 ρ ωk

(
b̂†k(t) + ( b̂†−k(t))

†
)

exp

[
− i k x

]
(222)

has to be the same as ŷ(x). On setting k = −k′ in the above equation, one has

ŷ†(x) =
1√
L

∑

k′

√
h̄

2 ρ ωk′

(
b̂†−k′(t) + ( b̂†k′(t))

†
)

exp

[
+ i k′ x

]
(223)

For ŷ†(x) to be equal to ŷ(x), it is necessary that the Hermitean conjugate of

the operator b̂†k′ is equal to b̂k′ . This shows that the pair of operators are indeed
Hermitean conjugates. The quantum field is represented by the operator

ŷ(x) =
1√
L

∑

k′

√
h̄

2 ρ ωk′

(
b̂†−k′(t) + b̂k′(t)

)
exp

[
+ i k′ x

]
(224)

where the time-dependent creation and annihilation operators are given by

b̂k(t) = b̂k exp

[
− i ωk t

]

b̂†k(t) = b̂†k exp

[
+ i ωk t

]
(225)

The quantized Hamiltonian becomes

Ĥ = ρ
∑

k

ω2
k

(
ĉ†k ĉk + ĉ−k c

†
−k

)

=
∑

k

h̄ ωk
2

(
b̂†k b̂k + b̂−k b̂

†
−k

)
(226)

On transforming k → −k in the second term of the summation, one obtains the
standard form

Ĥ =
∑

k

h̄ ωk
2

(
b̂†k b̂k + b̂k b̂

†
k

)
(227)

40



where the b̂k and b̂†k are to be identified as annihilation and creation operators
for the quanta.

The quantum operator P̂ corresponding to the classical quantity P

P =

∫ L

0

dx P (228)

is evaluated as

P̂ = −
(
κ a

2 ρ

) ∑

k

h̄ k

(
b̂†−k − b̂k

) (
b̂†k + b̂−k

)
(229)

where the plane-wave orthogonality properties have been used. This quantity
can be expressed as the sum of two terms

P̂ = −
(
κ a

2 ρ

) ∑

k

h̄ k

(
b̂†−k b̂

†
k − b̂k b̂−k

)

+

(
κ a

2 ρ

) ∑

k

h̄ k

(
b̂k b̂

†
k − b̂†−k b̂−k

)
(230)

The operator P̂ can be shown to be equivalent to

P̂ = v2
∑

k

h̄ k b̂†k b̂k (231)

which obviously is proportional to the sum of the momenta of the quanta. The
quantity κ a

ρ
is just the square of the wave velocity v2. On noting that the

quanta travel with velocities given by v sign(k) and have energies given by
h̄ ωk = h̄ v | k |, one sees that P is the expressed as the total energy flux
associated with the quanta.

5.4 The Algebra of Boson Operators

The number operator n̂k can be defined6 as

n̂k = b̂†k b̂k (232)

which has eigenstates | nk > with eigenvalues nk

n̂k | nk > = nk | nk > (233)

The eigenvalues nk are positive integers, including zero. This can be inferred
from the commutation relations

[ b̂†k , b̂k′ ] = − δk,k′ (234)

6P. Jordan and O. Klein, Zeit. fūr Physik, 45, 751 (1927).
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which has the consequence that

[ n̂k , b̂
†
k′ ] = + δk,k′ b̂

†
k′

[ n̂k , b̂k′ ] = − δk,k′ b̂k′ (235)

Hence, when b̂k acts on an eigenstate of n̂k with eigenvalue nk it produces
another eigenstate of n̂k but with an eigenvalue of nk − 1, as can be seen since

n̂k b̂k | nk > = b̂k ( n̂k − 1 ) | nk >

= ( nk − 1 ) b̂k | nk > (236)

Therefore, since b̂k lowers the eigenvalue of the number operator by one unit,
one can write

b̂k | nk > = C(nk) | nk − 1 > (237)

where the complex number C(nk) has to be determined. The normalization
coefficient C(nk) can be determined by noting that

< nk | b̂†k (238)

is the Hermitean conjugate of the state

b̂k | nk > (239)

On taking the norm of the state and its conjugate, one finds the normalization

< nk | b̂†k b̂k | nk > = C∗(nk) C(nk) < nk − 1 | nk − 1 >

= | C(nk) |2 (240)

However, on using the definition of the number operator and the normalization
condition, one finds that

| C(nk) |2 = nk (241)

so, on choosing the phase factor, one can define

b̂k | nk > =
√
nk | nk − 1 > (242)

as the annihilation operator.

Likewise, one can see that Hermitean conjugate operator b̂†k when acting on
an eigenstate of the number operator increases its eigenvalue by one unit

n̂k b̂
†
k | nk > = b̂†k ( n̂k + 1 ) | nk >

= ( nk + 1 ) b̂†k | nk > (243)

Therefore, one has
b̂†k | nk > = C

′

(nk) | nk + 1 > (244)
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The coefficient C
′

(nk) is found from the normalization condition

< nk | b̂k b̂†k | nk > = C
′∗(nk) C

′(nk) < nk + 1 | nk + 1 >

= | C ′

(nk) |2 (245)

which with
b̂k b̂

†
k = n̂k + 1 (246)

yields
| C ′

(nk) |2 = nk + 1 (247)

Since, the phase factor has already been determined by the Hermitean conjugate
equation, one has

b̂†k | nk > =
√
nk + 1 | nk + 1 > (248)

which raises the eigenvalue of the number operator.

Hence, one sees that the eigenvalues of the number operator are separated
by integers. Furthermore, the smallest eigenvalue corresponds to nk = 0, since
for nk = 0 the equation

b̂k | nk > =
√
nk | nk − 1 > (249)

reduces to
b̂k | 0 > = 0 (250)

Hence, the hierarchy of states produced by the annihilation operator acting on
a number operator eigenstate terminates at nk = 0. Thus, the eigenvalues of
the number operator nk can have integer values 0 , 1 , 2 , 3 , . . . ,∞.

Therefore, any arbitrary number operator eigenstate | {nk} > , in which
the number of excitations (nk) in the each normal mode has been specified, can
be written in terms of the vacuum state | 0 > and the creation operators as

| {nk} > =
∏

k

(
( b̂†k )nk

√
nk!

)
| 0 > (251)

The repeated operation of the creation operator b̂†k creates a state with nk
bosonic excitations present in mode k and the denominator provides the correct
normalization for this state.

Any arbitrary state | Ψ > can be expressed as a linear superposition of
number operator eigenstates

| Ψ > =
∑

{nk}
C({nk}) | {nk} > (252)

where the sum runs over all possible number eigenstates, and the complex coef-
ficients C({nk}) are arbitrary except that they must satisfy the normalization
condition ∑

{nk}
| C({nk}) |2 = 1 (253)
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5.5 The Classical Limit

The classical limit of the quantum field theory can be characterized by the limit
in which the field operator can be replaced by a function. This requires that the
“classical” states are not only described as states with large numbers of quanta
in the excited normal modes, but also that the state is a linear superposition
of states with different number of quanta, with a reasonable well defined phase
of the complex coefficients. For a quantum state to ideally represent a given
classical state, one needs the quantum state to be composed of a coherent su-
perposition of states with different numbers of quanta.

That states which are eigenstates of the number operators ( | {nk} > ) can
not represent classical states, can be seen by noting that the expectation value
of the field operator is zero

< {nk} | ŷ(x) | {nk} > = 0 (254)

follows from the expectation value of the creation and annihilation operators

< {nk} | ak | {nk} > = 0 (255)

Despite the fact that the average value of the field is zero, the fluctuation in the
field amplitude is infinite since

< {nk} | ŷ(x)2 | {nk} > =
1

L

∑

k′

h̄

2 ρ ωk′
< {nk} |

(
b̂†k′ + b̂−k′

) (
b̂k′ + b̂†−k′

)
| {nk} >

=
1

L

∑

k′

h̄

2 ρ ωk′
( 1 + 2 nk′ ) (256)

and the zero-point contribution diverges logarithmically at the upper and lower
limits of integration.

Hence, the eigenstates of the number operator. or equivalently Ĥ, do not
describe the classical states of the string. Classical states must be expressed as
a linear superposition of energy eigenstates.

6 Classical Field Theory

The dynamics of a multi-component classical field φα is governed by a Lagrange
density L, which is a scalar quantity that is a function of the fields φα and their
derivatives ∂µφ

α. The equations of motion for the classical field are determined
by the principle of extremal action. That is, the classical fields are those for
which the action S

S =

∫
dt′

∫
d3x L

(
φα , ∂µφ

α

)
(257)
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is extremal. An arbitrary field φα can be expressed in terms of the extremal
value φαex and the deviation δφα as

φα = φαex + δφα (258)

The space and time derivatives of the arbitrary field can also be expressed as
the derivatives of the sum of the extremal field and the deviation

∂νφ
α = ∂νφ

α
ex + ∂νδφ

α (259)

The first-order change in the action δS is given by

δS =

∫ t

0

dt′
∫

d3x

[
δφα

∂

∂φα
L
(
φαex , ∂µφ

α
ex

)
+ (∂νδφ

α)
∂

∂(∂νφα)
L
(
φαex , ∂µφ

α
ex

) ]

(260)
On integrating by parts with respect to xν in the last term, and on assuming
appropriate boundary conditions, one finds

δS =

∫ t

0

dt′
∫

d3x δφα
[

∂

∂φα
L
(
φαex , ∂µφ

α
ex

)
− ∂ν

[
∂

∂(∂νφα)
L
(
φαex , ∂µφ

α
ex

) ] ]

(261)
which has to vanish for an arbitrary choice of δφα. Hence, one obtains the
Euler-Lagrange equations

∂

∂φα
L
(
φαex , ∂µφ

α
ex

)
= ∂ν

[
∂

∂(∂νφα)
L
(
φαex , ∂µφ

α
ex

) ]
(262)

This set of equations determine the time dependence of the classical fields
φαex(x). That is, out of all possible fields with components φα, the equations
of motion determine the physical field which has the components φαex. It is
convenient to define the field momentum density π0

α(x) conjugate to φα as

π0
α(xν) =

1

c

∂

∂(∂0φα)
L
(
φβ , ∂µφ

β

)
(263)

The Hamiltonian density H is then defined as the Legendre transform

H = c
∑

α

π0
α (∂0φ

α) − L (264)

which eliminates the time-derivative of the fields in terms of the momentum
density of the fields.

Exercise:

Starting from the Lorentz scalar Lagrangian

L =
1

2

[
( ∂µφ ) ( ∂µφ ) −

(
m c

h̄

)2

φ2

]
(265)
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for a real scalar field φ, determine the Euler-Lagrange equation and the Hamil-
tonian density H.

Exercise:

Consider the Lagrangian density

L =
1

2

[
( ∂µψ

∗ ) ( ∂µψ ) −
(
m c

h̄

)2

| ψ |2
]

(266)

for a complex scalar field ψ. Treat ψ and ψ∗ as independent fields.
(i) Determine the Euler-Lagrange equation and the Hamiltonian density H.
(ii) By Fourier transforming with respect to space and time, determine the form
of the general solution for ψ.

Exercise:

The Lagrangian density for the complex field ψ representing a charged par-
ticle is given by

L = − h̄2

2 m

(
∇ ψ∗

)
.

(
∇ ψ

)
− h̄

2 i

[
ψ∗
(
∂ψ

∂t

)
−
(
∂ψ∗

∂t

)
ψ

]
− ψ∗ V (x) ψ

(267)
(i) Determine the equation of motion, and the Hamiltonian density H.
(ii) Consider the case V (x) ≡ 0, then by Fourier transforming with respect to
space and time, determine the form of the general solution for ψ.

6.1 The Hamiltonian Formulation

The Hamiltonian formulation reserves a special role for time, and so is not
Lorentz covariant. However, the Hamiltonian formulation is the most conve-
nient formulation for quantizing fields. The Hamilton equations of motion are
determined from the Hamiltonian

H =

∫
d3x H (268)

by noting that H is only a functional of π0
α and φα. This can be seen, since as

H =

∫
d3x

(
c
∑

α

π0
α (∂0φ

α) − L
)

(269)

then, the first-order variation of the Hamiltonian δH is given by

δH =

∫
d3x

[
c
∑

α

(
δπ0
α (∂0φ

α) + π0
α (∂0δφ

α)

)
− δL

]
(270)
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but, from the Lagrangian formulation of field theory, one has

1

c
δL = δφα (∂0π

0
α ) + (∂0δφ

α) π0
α (271)

where the Euler-Lagrange equations were substituted into the first term. There-
fore, the variation in the Hamiltonian is given by

δH =

∫
d3x c

∑

α

(
δπ0
α (∂0φ

α) − δφα (∂0π
0
α)

)
(272)

which does not involve the time derivative of the fields. This implies that
the Hamiltonian is a function of the fields π0

α, φα and their derivatives. On
calculating the variation of H using the independent variables π0

α and φα, and
integrating by parts, one finds that the Hamiltonian equations of motion are
given by

c ∂0φ
α =

(
∂H
∂π0

α

)
− ∇

(
∂H

∂(∇π0
α)

)

− c ∂0π
0
α =

(
∂H
∂φα

)
− ∇

(
∂H

∂(∇φα)

)
(273)

The structure of these equations are similar to those of the classical mechanics of
point particles. Similar to classical mechanics of point particles, one can define
Poisson Brackets with fields. When quantizing the fields, the Poisson Bracket
relations between the fields can be replaced by commutation relations.

6.2 Symmetry and Conservation Laws

Emmy Noether produced a theorem linking continuous symmetries of a La-
grangian to conservation laws7.

6.2.1 Conservation Laws

Consider a Lagrangian density L which is a function of a set of fields φα(x) and
their derivatives defined in a Minkowski space x. Consider how the Lagrangian
density changes for a particular choice of a combination of infinitesimal trans-
formations of the field components

φα(x) → φα′(x) = φα(x) + δφα(x) (274)

and, as a consequence, the derivatives of the field components also transform as

∂µφ
α(x) → ∂µφ

α′(x) = ∂µφ
α(x) + ∂µδφ

α(x) (275)

7E. Noether, Nachr. d. Kgl. Gessch. d. Wiss. Gottingen, K1. Math. Phys. (1918) 235.
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Under this combined transformation, the Lagrangian density changes by an
infinitesimal amount δL, given by

δL =

(
∂L

∂(∂µφα)

)
∂µδφ

α +
∂L
∂φα

δφα (276)

where the field index α is to be summed over. However, the generalized mo-
mentum density πµα(x) is defined by

πµα(x) =

(
∂L

∂(∂µφα)

)
(277)

so

δL = πµα (∂µδφ
α) +

∂L
∂φα

δφα (278)

The Euler-Lagrange equation for each field φα is given by

∂µπ
µ
α − ∂L

∂φα
= 0 (279)

where φα satisfies the appropriate boundary conditions. Thus, on adding and
subtracting a term

(∂µ π
µ
α) δφα (280)

to δL, one finds

δL =

(
πµα ∂µδφ

α + (∂µ π
µ
α ) δφα

)
+

(
∂L
∂φα

− ∂µπ
µ
α

)
δφα

= ∂µ

(
πµα δφ

α

)
+

(
∂L
∂φα

− ∂µπ
µ
α

)
δφα

= ∂µ

(
πµα δφ

α

)
(281)

since the last term in the second line vanishes if the fields φα satisfy the Euler-
Lagrange equations. If the Lagrangian is invariant under the transformation,
then δL = 0, so

∂µ

(
πµα δφ

α

)
= 0 (282)

where the field index α is to be summed over. The above equation can be
re-written as a continuity equation

∂µj
µ = 0 (283)

where the conserved current jµ(x) is given by

jµ(x) ∝ πµα(x) δφα(x)

∝
(

∂L
∂(∂µφα)

)
δφα(x) (284)
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up to a constant of proportionality. The normalization of the conserved current
is arbitrary and can be chosen at will. Since it is recognized that δφα is in-
finitesimal, the normalization is chosen by introducing an infinitesimal constant
ǫ via

ǫ jµ(x) = πµα(x) δφα(x)

=

(
∂L

∂(∂µφα)

)
δφα(x) (285)

The conserved charge Q is defined as the integral over all space of the time
component of the current density j(0). That is, the conserved charge is given by

Q =

∫
d3x j(0)(x) (286)

or, more specifically

ǫ Q =

∫
d3x π(0)

α (x) δφα(x)

=

∫
d3x

(
∂L

∂(∂0φα)

)
δφα(x) (287)

Since ǫ is a constant, the total charge Q is constant. Therefore, the total time
derivative of Q vanishes

dQ

dt
= 0 (288)

The spatial components of jµ form the current density vector.

6.2.2 Noether Charges

Consider the infinitesimal variation of a complex field φα(x) defined by

φα(x) → φ′
α
(x) = φα(x) + i ǫ

∑

β

λαβ φ
β(x) (289)

If this infinitesimal variation leads to L being invariant, one has a conserved
current

jµ = i
∑

α,β

(
∂L

∂(∂µφα)

)
λαβ φ

β(x) (290)

An important example is given by the infinitesimal transformation

ψ′ = ψ + i ǫ ψ

ψ∗′ = ψ∗ − i ǫ ψ∗ (291)
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where ψ and its complex conjugate ψ∗ are regarded as independent fields. The
transformation represents a an infinitesimal constant shift of the phase of the
field8. The conserved current is

jµ = − i

[ (
∂L

∂(∂µψ)

)
ψ(x) −

(
∂L

∂(∂µψ∗)

)
ψ∗(x)

]
(292)

which is the electromagnetic current density four-vector.

Exercise:

The Lagrangian density for the complex Schrödinger field representing a
charged particle is given by

L = − h̄2

2 m

(
∇ ψ∗

)
.

(
∇ ψ

)
− h̄

2 i

[
ψ∗
(
∂ψ

∂t

)
−
(
∂ψ∗

∂t

)
ψ

]
− ψ∗ V (x) ψ

(293)
(i) Determine the conserved Noether charges.

Exercise:

Determine the Noether charges for a complex Klein-Gordon field theory,
governed by the Lagrangian density

L =
1

2

[
( ∂µψ

∗ ) ( ∂µψ ) −
(
m c

h̄

)2

| ψ |2
]

(294)

6.2.3 Noether’s Theorem

The basic theorem can be generalized to the case where the Lagrangian density
is not invariant under the infinitesimal transformation, but instead changes by
a combination of total derivatives. That is,

δL = ǫ ∂µΛ
µ (295)

8This particular transformation is a specific example of a gauge transformations of the first
kind, in which

ψ′(x) = exp

[
− i

q

h̄ c
Λ(x)

]
ψ(x)

A gauge transformation of the second kind is one in which the field changes according to

Aµ′ = Aµ + (∂µ Λ)

Since p̂µ = i h̄ ∂µ, the combination of these transformations keep the quantity (p̂µ − q

c
Aµ)ψ

invariant
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for some analytic vector function with components Λµ. This type of transforma-
tion does not change the total action. If the Lagrangian changes by the above
amount for the combined transformation δφα

φα(x) → φα′(x) = φα(x) + δφα(x) (296)

then as has been previously shown

δL =

(
πµα (∂µδφ

α) + (∂µπ
µ
α) δφα

)
+

(
∂L
∂φα

− ∂µπ
µ
α

)
δφα

= ∂µ

(
πµα δφ

α

)
+

(
∂L
∂φα

− ∂µπ
µ
α

)
δφα

= ∂µ

(
πµα δφ

α

)
(297)

one has

ǫ ∂µΛ
µ = ∂µ

(
πµα δφ

α

)
(298)

If the conserved currents are identified as

ǫ jµ =

(
πµα δφ

α

)
− ǫ Λµ (299)

then the continuity condition
∂µj

µ = 0 (300)

holds.

6.3 The Energy-Momentum Tensor

An example of Noether’s theorem is given by the transformation

φα(x) → φα(x+ ǫ) = φα(x) + ǫµ (∂µφ
α) (301)

which represents an infinitesimal space-time translation. This is a symmetry
appropriate to a Lagrangian density L which has no explicit x dependence. We
shall assume that the Lagrangian density only depends on the field φα and its
derivatives ∂νφ

α

L = L
(
φα, (∂νφ

α)

)
(302)

In this case, the change in the Lagrangian density is given by the total derivative

δL =

(
∂L

∂(∂νφα)

)
(∂νδφ

α) +

(
∂L
∂φα

)
δφα

= ǫµ
[ (

∂L
∂(∂νφα)

) (
∂ν∂µφ

α

)
+

(
∂L
∂φα

)
∂µφ

α

]

= ǫµ ∂µL (303)
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where the last line follows since the Lagrangian only depends implicitly on xµ

through the fields. Hence, the change in the Lagrangian is a total derivative

δL = ǫµ ∂µΛ (304)

where Λ = L. Therefore, for transformations of the type

φα → φα + ǫµ (∂µφ
α) (305)

Noether’s theorem takes the form

ǫµ
(
∂µL

)
= ǫµ

[ (
∂L

∂(∂νφα)

)
∂ν

(
∂µφ

α

)
+

(
∂L
∂φα

)
∂µφ

α

]

= ǫµ
[ (

∂L
∂(∂νφα)

)
∂ν

(
∂µφ

α

)
+ ∂ν

(
∂L

∂(∂νφα)

)
∂µφ

α

]

= ǫµ ∂ν

[ (
∂L

∂(∂νφα)

) (
∂µφ

α

) ]
(306)

where the Euler-Lagrange equation has been used in the second line. Thus, the
fields satisfy the continuity conditions

0 = ǫµ ∂ν

[ (
∂L

∂(∂νφα)

) (
∂µφ

α

)
− δνµ L

]
(307)

where

δµν = 1 if µ = ν

δµν = 0 otherwise (308)

The conserved current density is identified as

T νµ =

[ (
∂L

∂(∂νφα)

) (
∂µφ

α

)
− δνµ L

]
(309)

which is the energy-momentum density T νµ . The energy momentum tensor sat-
isfies the conservation law

∂ν T
ν
µ = 0 (310)

The second-rank tensor can be written in contravariant form as

T ν,µ =

[ (
∂L

∂(∂νφα)

) (
∂µφα

)
− gν,µ L

]
(311)

where the metric tensor has been used to raise the index µ. The component
with µ = ν = 0 is the Hamiltonian density H for the fields

H = T 0,0 =

[ (
∂L

∂(∂0φα)

) (
∂0φ

α

)
− L

]
(312)
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so the total energy of the field is given by

E =

∫
d3x H =

∫
d3x T 0,0 (313)

The energy is conserved since

1

c

∂H
∂t

+
∑

j

∂

∂x(j)
T j,0 = 0 (314)

where the components c T j,0 represents the components of the energy-density
flux. Likewise, the components

T 0,j = c π(0)
α

(
∂(j)φα

)
(315)

are related to the momentum density since the total momentum of the field is
given by

P (j) =

∫
d3x

1

c
T 0,j (316)

Since T 0,j is the momentum density, one expects that the components of the
orbital angular momentum density are proportional to

M0,j,k = T 0,j x(k) − T 0,k x(j) (317)

One can define a third-rank tensor via

Mµ,ν,ρ = Tµ,ν xρ − Tµ,ρ xν (318)

The divergence of the third-rank tensor is evaluated as

∂µM
µ,ν,ρ =

(
∂µT

µ,ν

)
xρ + Tµ,ν δρµ −

(
∂µT

µ,ρ

)
xν − Tµ,ρ δνµ

= T ρ,ν − T ν,ρ (319)

where the conservation law for Tµ,ν and the condition

∂µx
ρ = δµ

ρ (320)

expressing the independence of the variables xρ and xµ have been used. The
divergence of the third-rank tensor vanishes if Tµ,ν is symmetric. Thus, the
angular momentum tensor Mµ,ν,ρ is conserved if the energy-momentum tensor
is symmetric.

It should be noted that the tensor Tµ,ν is only symmetric for scalar fields.
This is related to the fact that a vector or tensor field carries a non-zero intrin-
sic angular momentum. It is possible to incorporate an additional term in the
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momentum-energy tensor of a vector field to make it symmetric.

Exercise:

(i) Determine the momentum-energy tensor for a complex scalar field ψ governed
by the Lagrangian density

L =
1

2

[
( ∂µψ

∗ ) ( ∂µψ ) −
(
m c

h̄

)2

| ψ |2
]

(321)

(ii) Find the forms of the energy and momentum density of the field.
(iii) Using the form of the general solution, find expressions for the total energy
and momentum of the field in terms of the Fourier components of the field.

Exercise:

(i) Determine the energy-momentum tensor for the Lagrangian density for the
complex Schrödinger field representing a charged particle given by

L = − h̄2

2 m

(
∇ ψ∗

)
.

(
∇ ψ

)
− h̄

2 i

[
ψ∗
(
∂ψ

∂t

)
−
(
∂ψ∗

∂t

)
ψ

]
− ψ∗ V (x) ψ

(322)
(ii) Find the forms of the energy and momentum density of the field.
(iii) Find the forms of the generalized orbital angular momentum density of the
field.
(iv) Consider the case where V (x) ≡ 0. Using the form of the general solution,
find expressions for the total energy and momentum of the field in terms of the
Fourier components of the field.

7 The Electromagnetic Lagrangian

The Lagrangian for a source-free electromagnetic field must be gauge invariant
and must be a Lorentz scalar. An appropriate scalar Lagrange density can be
constructed as

L = − 1

16 π
Fµ,ν Fµ,ν (323)

where Aµ are the fields. The constant of proportionality is merely a matter
of convention. The Euler-Lagrange equations are found by expressing the La-
grangian density in the symmetrical form

L = − 1

16 π
Fµ,ν gµ,σ gν,τ Fσ,τ (324)

From the above expression, it is seen that the two factors of the antisymmetri-
cal second-rank field tensors produce identical variations of the action. Further-
more, in this form the Lagrangian only depends on the contravariant derivatives
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of the contravariant components of the field. This form allows variations to be
made directly without using the properties of the metric tensor. The first-order
variation of the action can be expressed as

δS = − 2

16 π c

∫
d4x

[
( ∂µδAν ) Fµ,ν − ( ∂νδAµ ) Fµ,ν

]

=
2

16 π c

∫
d4x

[
δAν ∂µ

(
Fµ,ν − F ν,µ

) ]

=
1

4 π c

∫
d4x δAν ( ∂µF

µ,ν ) (325)

where the second line has been obtained by integrating by parts and the last
line was obtained by using the antisymmetric nature of the field tensor. The
vanishing of the first-order variation of the action δS, for arbitrary δAν , yields
the Euler-Lagrange equation

∂µF
µ,ν = 0 (326)

which is the same as Maxwell’s equations in the absence of any sources.

In the absence of the source, the Lagrangian density is gauge invariant.
This can be seen by noting that the contravariant field tensor Fµ,ν is gauge
invariant, and the covariant tensor is obtained from the contravariant tensor by
lowering both indices with the metric tensor. The contravariant field tensor can
be expressed as the matrix

Fµ,ν ≡




0 −E(1) −E(2) −E(3)

E(1) 0 −B(3) B(2)

E(2) B(3) 0 −B(1)

E(3) −B(2) B(1) 0


 (327)

and the co-variant field tensor can be expressed as the matrix

Fµ,ν ≡




0 E(1) E(2) E(3)

−E(1) 0 −B(3) B(2)

−E(2) B(3) 0 −B(1)

−E(3) −B(2) B(1) 0


 (328)

in which the sign of the terms with mixed time and space indices have changed.
Therefore, the Lagrangian density can be expressed in terms of the electromag-
netic fields as

L =
1

8 π
( E2 − B2 ) (329)

Since the Lagrangian density is completely expressed in terms of the electro-
magnetic field, it is gauge invariant.
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In the presence of source densities, the Lagrangian density is extended to
include the interaction to become

L = − 1

16 π
Fµ,ν Fµ,ν − 1

c
Aµ j

µ (330)

This interaction term is the only Lorentz scalar that one can form with the
four-vector current and the field. It should be noted that the last term is not
gauge invariant. This action yields the equation of motion

∂µF
µ,ν =

4 π

c
jν (331)

as expected.

The lack of gauge invariance in the interaction Lagrangian

Lint = − 1

c
Aµ jµ (332)

does not affect the equations of motion. On performing the gauge transforma-
tion

Aµ → Aµ′ = Aµ + ∂µΛ (333)

one finds that the interaction part of the Lagrangian density is transformed to

Lint′ = − 1

c

(
Aµ + ∂µΛ

)
jµ (334)

Since charge is conserved, the current density must satisfy the continuity equa-
tion

∂µjµ = 0 (335)

The continuity condition can be used to express the interaction as the untrans-
formed Lagrangian density and a perfect derivative

Lint′ = − 1

c
Aµ jµ − 1

c
∂µ( Λ jµ ) (336)

The perfect derivative term only adds a constant term to the action which does
not affect the equations of motion9. Hence, although the Lagrangian density
is not gauge invariant in the presence of sources, the Lagrangian equations of
motion are gauge invariant.

The momentum density conjugate to Aµ is calculated as

π0,µ = − c

4 π
F 0,µ (337)

9The change in the form of the interaction Lagrangian density produced by a gauge trans-
formation should be taken as a warning against considering quantities in a field theory as
being localized.
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which vanishes for µ = 0, indicating that the scalar potential A0 is not a
dynamic variable. This suggests that it may be appropriate to completely fix
the scalar potential by a choice of gauge, such as the Coulomb gauge which leads
to the scalar potential φ being fixed by Poisson’s equation. In the presence of
sources, the Hamiltonian density is expressed as

H = − 1

4 π
( ∂0Aν ) F 0,ν − L

= − 1

4 π
( F0,ν + ∂νA0 ) F 0,ν − L

= − 1

4 π
( F0,ν + ∂νA0 ) F 0,ν +

1

8 π
( B2 − E2 ) +

1

c
jµ Aµ

= +
1

8 π
( E2 + B2 ) − 1

4 π
( ∇ . E ) A0 +

1

c
jµ Aµ

+
1

4 π
∇ . ( A(0) E ) (338)

The fourth line has been derived by noting that the non-zero components of
F 0,µ are only non-zero for space-like µ and are given by

F 0,i = − E(i) (339)

Thus, the first term in the third line is given by

− 1

4 π
F0,ν F 0,ν = +

1

4 π
E2 (340)

which can be combined with the term

− 1

8 π
( E2 − B2 ) (341)

originating from the Lagrangian density. This combination results in the term

1

8 π

(
E2 + B2

)
(342)

which is recognized as the usual expression for the energy density of a free
electromagnetic field. On substituting eqn(339) into the second term in the
third line, one finds

+
1

4 π
( ∇A0 ) . E (343)

which can be expressed as

1

4 π
( ∇A0 ) . E =

1

4 π
∇ . ( A0 E ) − 1

4 π
A0 ( ∇ . E ) (344)

This relation has been used in arriving at the fourth line of eqn(338). Since the
divergence of the electric field satisfies Gauss’s law

∇ . E = 4 π ρ (345)
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the expression given in eqn(344) simplifies to

1

4 π
( ∇A0 ) . E =

1

4 π
∇ . ( A0 E ) − A0 ρ (346)

Therefore, the Hamiltonian density can be expressed as

H = +
1

8 π
( E2 + B2 ) − ρ A0 +

1

c
jµ Aµ

+
1

4 π
∇ . ( A(0) E ) (347)

On combining the term ρ A0 with the last term

1

c
jµ Aµ = ρ A0 − 1

c
j . A (348)

which originates from the Lagrangian interaction (−Lint), one finds that the
terms proportional to A0 ρ in the Hamiltonian density cancel. On neglecting
the total derivative term [ + 1

4 π
∇ . ( φ E ) ], one finds that the Hamiltonian

density reduces to

H =
1

8 π
( E2 + B2 ) − 1

c
j . A (349)

The first term is the energy density of the free electromagnetic field and the
second term represents the energy of the interaction between the electromag-
netic field and “charged particles”. It should be noted that the interaction
Hamiltonian is expressed entirely in terms of an interaction between the current
density and the vector potential, which demonstrates that the Hamiltonian is
not invariant under a Lorentz transformation

Hint = − 1

c
j . A (350)

but is invariant under rotations in space. This situation is to be contrasted
with the interaction term in the Lagrangian which was Lorentz invariant as it
explicitly included an interaction between the scalar potential and the charge
density.

7.1 Conservation Laws for Electromagnetic Fields

The Lagrangian density L of an electromagnetic field is given by the Lorentz
scalar

L = − 1

16 π
Fµ,ν Fµ,ν − 1

c
jµ Aµ (351)

or

L = − 1

16 π

[ (
∂µAν

)
−
(
∂νAµ

) ] [ (
∂µAν

)
−
(
∂νAµ

) ]
− 1

c
jµ A

µ

(352)
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The Noetherian energy-momentum tensor T ν,µ is found from

T νµ =

(
∂L

∂(∂νAρ)

) (
∂µA

ρ

)
− δνµ L

=

(
∂L

∂(∂νAρ)

) (
∂µAρ

)
− δνµ L (353)

The derivative of the Lagrangian density is evaluated as
(

∂L
∂(∂νAρ)

)
= − 1

8 π

(
F ν,ρ − F ρ,ν

)

= − 1

4 π
F ν,ρ (354)

Therefore, the energy-momentum density is found as

T νµ = − 1

4 π
F ν,ρ

(
∂µAρ

)
− δνµ L (355)

On raising the index µ with the metric tensor, one has the contravariant second-
rank tensor

T ν,µ = − 1

4 π
F ν,ρ

(
∂µAρ

)
− gν,µ L (356)

The energy-momentum tensor is not gauge invariant, as it explicitly involves
the fields Aµ. On using the expression for the source-free Lagrangian density

L =
1

8 π

(
E2 − B2

)
(357)

one finds that the time components of Tµ,ν are given by

T 0,0 =
1

8 π

(
E2 + B2

)
+

1

4 π
∇ .

(
φ E

)
(358)

The expression T 0,0 is the Hamiltonian density H, in the absence of sources,
which represents the energy density of the free field. The momentum density is
given by the mixed time and space components, and is given by

T 0,j = − 1

4 π
F 0,ρ ( ∂(j)Aρ ) (359)

but since Fµ,ν is antisymmetric, only the terms where ρ is a spatial index are
non-zero. Hence, one has

T 0,j = − 1

4 π

∑

i

F 0,i ( ∂(j)Ai )

= +
1

4 π

∑

i

F 0,i

(
∂(j)A(i) − ∂(i)A(j)

)
+

1

4 π

∑

i

F 0,i ( ∂(i)A(j) )

(360)
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where the relation between the space-like components of the covariant and con-
travariant four-vector Ai = − A(i) has been used. Since the time component
of the field tensor is given by

F 0,i = − E(i) (361)

and10 (
∂(i)A(j) − ∂(j)A(i)

)
= −

∑

k

ξi,j,k B(k) (362)

one finds that the momentum density is given by

T 0,j = − 1

4 π

∑

i,k

ξi,j,k E(i) B(k) − 1

4 π

∑

i

E(i) ( ∂(i)A(j) )

=
1

4 π

(
E ∧ B

)(j)

+
1

4 π
E . ( ∇ A(j) ) (363)

On noting that in the absence of sources, one has

∇ . E = 0 (364)

and by adding a term proportional to A(j) ( ∇ . E ) to the expression for T 0,j

in eqn(363), one arrives at the result

T 0,j =
1

4 π

(
E ∧ B

)(j)

+
1

4 π
∇ .

(
A(j) E

)
(365)

The components T 0,ν , apart from the terms involving total derivatives which
integrate out to zero, are related to the total energy and the components of the
total momentum of the electromagnetic field. The components of Tµ,ν satisfy
the continuity equations

∂µ T
µ,ν = 0 (366)

which represent the conservation of energy and momentum. The other mixed
time and spatial components of the energy-momentum tensor are evaluated as

T j,0 =
1

4 π

(
E ∧ B

)(j)

+
1

4 π

[ (
∇ ∧

(
φ B

) )(j)

− 1

c

∂

∂t

(
φ E(j)

) ]

(367)
The components T j,0 represent the components of the energy flux.

It should be noted that the energy-momentum tensor Tµ,ν is not symmet-
ric. This has the consequence that the covariant generalization of the angular
momentum to the third-rank tensor

Mµ,ν,ρ = Tµ,ν xρ − Tµ,ρ xν (368)

10Since the vector relationship B = ∇ ∧ A involves the covariant derivative, there is a
negative sign in the analogous expression involving the contravariant derivative.

60



is not conserved as the energy-momentum tensor is not symmetric. Additional
terms can be added to the energy-momentum tensor11, to create a symmetric
tensor Θµ,ν . These extra terms account for the intrinsic angular momentum of
the photon.

The symmetric energy-momentum tensor Θµ,ν can be found by substituting

(∂νAλ) = − Fλ,ν + (∂λAν) (369)

into the expression for Tµ,ν , to yield

Tµ,ν =
1

4 π

[
gµ,ρ Fρ,λ F

λ,ν +
1

4
gµ,ν Fρ,λ F

ρ,λ

]
− 1

4 π
gµ,ρ Fρ,λ (∂λAν)

(370)
The first two terms are symmetric w.r.t. µ and ν and are gauge invariant. These
two terms will form the basis for Θµ,ν , which will be expressed as

Θµ,ν =
1

4 π

[
gµ,ρ Fρ,λ F

λ,ν +
1

4
gµ,ν Fρ,λ F

ρ,λ

]
(371)

The expression Θµ,ν is symmetric under the interchange of µ and ν, as can be
seen by writing

Θµ,ν =
1

4 π

[
Fµλ F

λ,ν +
1

4
gµ,ν Fρ,λ F

ρ,λ

]

=
1

4 π

[
Fµ,λ Fλ

ν +
1

4
gµ,ν Fρ,λ F

ρ,λ

]
(372)

If Θµ,ν and Tµ,ν are to represent the same set of conserved quantities, the last
term in eqn(370) must be expressible as a total derivative. That this is true can
be seen by examining the asymmetric term

− 1

4 π
gµ,ρ Fρ,λ (∂λAν) = − 1

4 π
Fµ,λ (∂λA

ν) (373)

where the index ρ was raised by using the metric tensor. On combining the
above expression with the source free Maxwell equation

(∂λF
µ,λ) = 0 (374)

11J. Belinfante, Physica 6, 887 (1939) has shown that the modified tensor Θµ,ν defined by

Θµ,ν = Tµ,ν +

(
∂ρ Λρ;µ,ν

)

where Λρ;µ,ν is an arbitrary tensor that is antisymmetric under the interchange of the first
pair of indices

Λρ;µ,ν = − Λµ;ρ,ν

will automatically satisfy the same continuity conditions as Tµ,ν and leave the total energy
and momentum unaltered.
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one obtains

− 1

4 π
gµ,ρ Fρ,λ (∂λAν) = − 1

4 π

[
Fµ,λ (∂λA

ν) + Aν (∂λF
µ,λ)

]

= − 1

4 π
∂λ

(
Fµ,λ Aν

)
(375)

which is a total covariant derivative of a third-rank tensor which is antisymmet-
ric under the interchange of µ and λ. Furthermore, adding this term does to the
energy-momentum tensor does not change the energy-momentum conservation
law. This can be seen by observing that the difference between the two forms
of energy-momentum conservation law involves the double derivative

∂µ ( Θµ,ν − Tµ,ν ) = − 1

4 π
∂µ ∂λ

(
Fλ,µ Aν

)
(376)

and Fλ,µ is antisymmetric. On interchanging the order of the derivatives in the
right hand side, switching the summation labels, and using the antisymmetric
property of Fλ,µ, one has

∂µ ( Θµ,ν − Tµ,ν ) = − 1

4 π
∂µ ∂λ

(
Fλ,µ Aν

)

= − 1

4 π
∂λ ∂µ

(
Fλ,µ Aν

)

= − 1

4 π
∂µ ∂λ

(
Fµ,λ Aν

)

= +
1

4 π
∂µ ∂λ

(
Fλ,µ Aν

)
(377)

On comparing the right hand sides of the first and last line, one finds that they
have opposite signs and, therefore, they are zero. Thus, the difference between
continuity relations vanish

∂µ ( Θµ,ν − Tµ,ν ) = 0 (378)

Hence, since Tµ,ν is conserved, then the symmetrized energy-momentum tensor
Θµ,ν is also conserved.

Thus, the symmetric energy-momentum tensor Θµ,ν expressed by

Θµ,ν =
1

4 π

[
gµ,ρ Fρ,λ F

λ,ν +
1

4
gµ,ν Fρ,λ F

ρ,λ

]
(379)

is a conserved quantity. The purely temporal component is given by

Θ0,0 =
1

8 π

(
E2 + B2

)
(380)
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and the mixed temporal and spatial components are given by

Θ0,j =
1

4 π

(
E ∧ B

)(j)

(381)

The temporal and spatial components of Θ0,µ are, respectively, recognized as
being the energy-density and the momentum-density vector of the field. The
components Θj,0 are recognized as forming the Poynting vector which represents
the energy flux of the electromagnetic field. The spatial components are given
by

Θi,j = − 1

4 π

[
E(i) E(j) + B(i) B(j) − 1

2
δi,j ( E2 + B2 )

]
(382)

Noether’s theorem is purely classical, but there are generalizations for quan-
tum fields. Quantum generalizations includes the Ward-Takahashi and Taylor-
Slavnov identities.

Exercise:

Evaluate the components T j,0 and T i,j of the (asymmetric) energy-momentum
tensor for a source-free electromagnetic field.

Exercise:

Show that in the presence of sources, the symmetric energy-momentum ten-
sor has components with the form

Θ0,0 =
1

8 π

(
E2 + B2

)
− 1

c
j . A

Θ0,j =
1

4 π

(
E ∧ B

)(j)

− ρ A(j) (383)

Verify the form of the conservation laws for energy and momentum.

Exercise:

Show that the extra term added to the tensor T i,j in order that Θi,j will
be symmetric produces a contribution to the angular momentum density of the
form

S0,j =
1

4 π

(
E ∧ A

)(j)

(384)

which is the intrinsic spin density of the electromagnetic field.
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7.2 Massive Spin-One Particles

The electromagnetic theory has been unified with the theory of weak interac-
tions. This generalization requires the existence of two new types of spin-one
particles in addition to the photon, which together mediate the electro-weak
interaction. These new particles have non-zero mass. The massive spin-one
particle has to satisfy the equation12

pµ pµ = m2 c2 (385)

and with the quantization condition,

pµ → p̂µ = i h̄
∂

∂xµ
(386)

the four-vector field Aµ must satisfy the Klein-Gordon equation

[
1

c2
∂2

∂t2
− ∇2 +

(
m c

h̄

)2 ]
Aµ =

4 π

c
jµ (387)

where h̄ no longer drops out. This equation can be derived from the Lagrangian

L = − 1

16 π
Fµ,ν Fµ,ν +

1

8 π

(
m c

h̄

)2

Aµ Aµ − 1

c
jµ Aµ (388)

For example, on varying Aµ, one obtains the equation of motion

∂νF
ν,µ +

(
m c

h̄

)2

Aµ =
4 π

c
jµ (389)

Neither the Lagrangian, nor the equation of motion are gauge invariant. The ap-
propriate gauge condition can be enforced by imposing conservation of charge13

∂µj
µ = 0 (390)

On taking the four-divergence of the equation of motion, one finds

∂µ∂νF
ν,µ +

(
m c

h̄

)2

∂µA
µ =

4 π

c
∂µj

µ (391)

The first term on the left-hand side vanishes due to the definition of Fµ,ν , since

F ν,µ = ∂νAµ − ∂µAν (392)

one finds
∂νF

ν,µ = ∂ν∂
νAµ − ∂µ∂νA

ν (393)

12A. Proca, J. Phys. et Radium 7, 147 (1936).
13Note that, unlike the massless photon, charge conservation has to be imposed as an

additional assumption.
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therefore

∂µ∂νF
ν,µ = ∂ν∂

ν∂µA
µ − ∂µ∂

µ∂νA
ν

= 0 (394)

The term on the right-hand side of eqn(391) also vanishes, because it was chosen
to impose charge conservation. Hence, one finds that Aµ for a massive spin-one
particle must satisfy the Lorenz gauge condition

∂µA
µ = 0 (395)

Exercise:

Starting from the expression eqn(379), determine the symmetrized energy-
momentum tensor for the massive vector field. Hence, find the energy and
momentum densities.

7.3 Polarizations of Massive Spin-One Particles

The four-vector potential with contravariant components Aµ(x) can be Fourier
transformed as

Aµ(x) =
1√
2 V

∑

k

(
Aµ(k) exp[ i kν xν ] + c.c.

)
(396)

which results in four components associated with four polarization vectors which
are denoted by êµ(k). For massive photons, if one assumes charge conservation,
the gauge fields must satisfy the Lorentz gauge condition. The Lorentz gauge
condition

∂µ A
µ(x) = 0 (397)

results in the Fourier components satisfying the condition

kµ A
µ(k) = 0 (398)

which involving the photon’s four-momentum. Apparently, the gauge condition
reduces the number of independent components of the four-vector potential from
four to three. However, we are used to thinking that massless photons only have
two independent polarizations. In the following, we shall see how this comes
about.

For a photon with mass m, one can apply the Lorentz gauge condition in
the laboratory frame. We shall choose the z-axis as the direction of the pho-
ton’s three-momentum k. With this choice, the photon’s four-momentum has
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components (k(0), 0, 0, k(3)) where k(0) =
√

(mc
h̄

)2 + k2. The Lorentz condition

becomes
k(0) A(0)(k) − k(3) A(3)(k) = 0 (399)

Hence, A(0)(k) = k(3)

k(0) A
(3)(k). This implies that in the photon’s rest frame, the

four-vector potential only has three spatial components and the scalar potential
is zero. In any case, there are only three-independent components of the four-
vector potential. The four-vector potential can be expressed in terms of the
three independent components as

A(x) =
1√
2 V

∑

k

[ (
A(3)(k) (

k(3)

k(0)
ê(0)(k) + ê(3)(k) )

+ A(1)(k) ê(1)(k) + A(2)(k) ê(2)(k)

)
exp[ i kν xν ] + c.c.

]

(400)

Thus, the four-vector associated with the (longitudinal) contravariant compo-

nent A(3)(k) has a polarization which is proportional to k(3)

k(0) ê
(0)(k) + ê(3)(k).

The vector with components A(3)(k) is physical since it lead to an electromag-
netic field. The electric and magnetic fields are defined by

E = − 1

c

∂

∂t
A − ∇ φ

B = ∇ ∧ A (401)

The longitudinal component of the electric field has a Fourier amplitude given
by

E(3)(k) = − i

(
k(0) A(3)(k) − k(3) A(0)(k)

)

= − i

(
k(0) − k(3)2

k(0)

)
A(3)(k)

= − i

(
m c
h̄

)2

k(0)
A(3)(k) (402)

and the longitudinal component of the magnetic field B(3)(k) is zero since

0 = − i

(
k(3) ê(3) ∧ A(k)

)
. ê(3)(k) (403)

Thus, the component A(3)(k) contributes to the E field but not the B field.
For massive photons, the unsymmmetrized energy-momentum tensor Tµ,ν is
expressed in terms of contributions from, not only the E and B fields, but also
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from the gauge field Aµ. The tensor is evaluated as

Tµ,ν =
1

16 π

(
gµ,ν Fρ,σ F

ρ,σ − 4 Fµ,ρ ∂ν Aρ

)
− gµ,ν

8 π

(
m c

h̄

)2

Aρ Aρ + gµ,ν
jρ Aρ
c

(404)
The energy-momentum tensor can be “symmetrized” by adding and subtracting
a term

+
4

16 π
Fµ,ρ ∂ρ A

ν (405)

to express the second term in a gauge-invariant form. We then note that that
remaining term (with the negative sign) could be put into the form of a diver-
gence of an antisymmetric third rank-tensor, if we could combine it with a term
of the form

− 1

4 π
( ∂ρ F

µ,ρ ) Aν = +
1

4 π
( ∂ρ F

ρ,µ ) Aν (406)

This can be accomplished by adding zero in the form of Aν times the Euler-
Lagrange equation

+ ∂ρ F
ρ,µ +

(
m c

h̄

)2

Aµ − 4 π

c
jµ = 0 (407)

therefore, completing the divergence at the expense of adding extra mass and
source terms. The divergence of third-rank antisymmetric tensor can be dropped,
leading to the “symmetrized” energy-momentum tensor given by

Θµ,ν =
1

16 π

(
gµ,ν Fρ,σ F

ρ,σ + 4 Fµ,ρ Fρ
ν

)

− gµ,ν

8 π

(
m c

h̄

)2

Aρ Aρ +
1

4 π

(
m c

h̄

)2

Aµ Aν

+ gµ,ν
jρ Aρ
c

− jµ Aν

c
(408)

It is seen that the coupling of the electromagnetic fields to the current densities
spoils the symmetry of the energy-momentum tensor. Hence, the charge cur-
rents act as sources of angular momentum and results in the electromagnetic
field’s angular momentum not being conserved. The energy-density H is given
by Θ0,0 so

H =
1

8 π

[
E2 + B2

]
+

1

8 π

(
m c

h̄

)2 (
A(0)2 + A2

)
−

j . A

c
(409)

and the momentum density P is given by

P =
1

4 π c

(
E ∧ B

)
+

1

4 π c

(
m c

h̄

)2

A(0) A − j(0) A

c2
(410)
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Thus, the longitudinal photon with components A(3)(k) and A(0)(k) does have
physical effects, as do the two transverse photons A(1)(k) and A(2)(k). There-
fore, the four-vector potential of a massive electromagnetic field has three phys-
ical components.

Exercise:

Determine the contribution to the energy and momentum of the electromag-
netic field which originates from the coupled time and space-like (longitudinal)
components of the four-vector potential.

For a massless photon m = 0, so one sees that the longitudinal component
of the electric field E(3)(k) is zero. Also since for m = 0 one has k(0) = k(3),
so the Lorentz gauge condition requires that the component A(3)(k) is equal to
A(0)(k) and, therefore, the longitudinal component is associated with a single
polarization vector ( ê(0)(k) + ê(3)(k) ). Since A(0)(k) = A(3)(k), the norm of
the vector (A(0)(k), 0, 0, A(3)(k)) is identical zero. For m = 0, the longitudinal
component A(3)(k) neither contributes to the E field nor to the B field. Since
the energy and momentum densities are expressed in terms of the E and B
fields via

H =
1

8 π

[
E2 + B2

]
(411)

and

P =
1

4 π c

(
E ∧ B

)
(412)

the component A(3)(k) or equivalently A(0)(k) has no physical effect. Hence,
it can be deemed unphysical. Therefore, the four-vector potential of a mass-
less electromagnetic field only has two physical components A(1)(k) and A(2)(k)
which are the components transverse to the direction of propagation.

7.4 The Propagator for Massive Photons.

The four-vector potential can be expressed entirely in terms of the currents,
via the introduction of a photon propagator. The equation of motion for the
massive spin-one particle is

∂µ F
µ,ν +

(
m c

h̄

)2

Aν =
4 π

c
jν (413)

On Fourier transforming the linear equation with respect to space and time, one
obtains

[
− kµ k

µ +

(
m c

h̄

)2 ]
Aν(k) + kµ k

ν Aµ(k) =
4 π

c
jν(k) (414)
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which can be re-written as

[ (
− kρ k

ρ +

(
m c

h̄

)2 )
δνµ + kµ k

ν

]
Aµ(k) =

4 π

c
jν(k) (415)

The photon propagator is defined via

Aµ(k) = Dµ,λ(k) jλ(k) (416)

which leads to the phonon propagator being determined as the solution of a
matrix equation

[ (
− kρ k

ρ +

(
m c

h̄

)2 )
gν,µ + kν kµ

]
Dµ,λ(k) =

4 π

c
δνλ (417)

The above matrix equation can be solved by first writing the propagator as

Dµ,ν(k) = gµ,ν A(k2) + kµ kν B(k2) (418)

and then solving for the unknown quantities B(k2) and A(k2). This leads to
the following expression for the photon propagator

Dµ,ν(k) =

(
4π

c

)
(
gµ,ν − kµ kν

( m c
h̄

)2

)

[ (
m c
h̄

)2

− kρ kρ

] (419)

Thus, the Fourier component of the four-vector potential is given by

Aµ(k) =

(
gµ,ν − kµ kν

( m c
h̄

)2

)

[ (
m c
h̄

)2

− kρ kρ

]
(

4π

c

)
jν(k) (420)

Hence, Aµ(x) can be found from the inverse Fourier transform. It should be
noted that, if one imposes current conservation

kν jν(k) = 0 (421)

the second term in the numerator of the photon propagator has no physical
effect. We also note that

kµ A
µ(k) =

(
4 π

c

) (
h̄

m c

)2

kν jν(k) (422)

So, once again we see that assumption of charge conservation enforces the
Lorentz gauge condition, even if the massive photon is involved in a virtual
process.
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8 Symmetry Breaking and Mass Generation

We shall first look at an example of Goldstone’s theorem which states that,
if a system described by a Lagrangian which has a continuous symmetry (and
only short-ranged interactions) has a broken symmetry state then the system
supports a branch of small amplitude excitations with a dispersion relation ωk
that vanishes at k = 0. We shall then examine the situation in which the system
is coupled by long-ranged interactions, as modelled by an electromagnetic field.
As was first pointed out by Anderson, the long-ranged interactions alter the
excitation spectrum of the symmetry broken state by removing the Goldstone
modes and generating a branch of massive excitations.

8.1 Symmetry Breaking and Goldstone Bosons

Consider a Lagrangian density for a complex scalar field of the form

L = ( ∂µψ
∗ ) ( ∂µψ ) −

(
m c

2 h̄ φ0

)2 (
ψ∗ ψ − φ2

0

)2

(423)

The Lagrangian density is invariant under the continuous global symmetry

ψ → ψ′ = exp

[
− i α

]
ψ (424)

for any real constant α. The static or minimum energy solution corresponds to

| ψ | = φ0 (425)

which leaves the phase of ψ undetermined. Since the phase of ψ is continuous,
the ground state is infinitely degenerate. If one writes

ψ = φ1 + i φ2

ψ∗ = φ1 − i φ2 (426)

then the Lagrangian can be written as a Lagrangian density involving the two
real scalar fields φ1 and φ2. The Lagrangian density has a U(1) symmetry which
corresponds to the rotation of ψ around a circle about the origin in the (φ1, φ2)
plane.

We shall assume the field ψ representing the physical ground state corre-
sponds to only one of the infinite number of possible candidates. The physical
state must have a phase, which shall be defined as zero. That is, one starts with
a ground state ψ = φ0, and then consider the small amplitude excitations. A
low-energy excited state corresponds to the complex field

ψ = φ0 + δψ (427)
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Figure 8: The potential V [ψ] described by the Lagrangian is invariant under
global rotations of the phase of ψ. The minima occurs at values of ψ which have
magnitudes φ0, therefore, the uniform static field is infinitely degenerate.

where δψ is static and uniform and can be considered to be very small. The
small amplitude complex field δψ can be expressed in terms of its real and
imaginary parts

δψ = χ1 + i χ2 (428)

The Lagrangian density takes the form

L = ( ∂µχ1 ) ( ∂µχ1 ) + ( ∂µχ2 ) ( ∂µχ2 ) −
(

m c

2 h̄ φ0

)2 (
2 φ0 χ1 + χ2

1 + χ2
2

)2

(429)
If one only considers infinitesimally small amplitude oscillations, one only needs
consider terms quadratic in the fields. The quadratic Lagrangian density LFree
describes non-interacting fields. The quadratic Lagrangian density is given by

LFree = ( ∂µχ1 ) ( ∂µχ1 ) −
(
m c

h̄

)2

χ2
1 + ( ∂µχ2 ) ( ∂µχ2 ) (430)

The symmetry breaking has resulted in the complex field breaking up into two
fields: The first field χ1 describes massive excitations m and the second field χ2

describes massless excitations. The first field χ1 has plane-wave solutions if the
energy and momentum are related via the dispersion relation

ω2 = c2 k2 +

(
m c2

h̄

)2

(431)

and represents excitations which corresponds to a “stretching” of φ0. It is
massive since this excitation moves the field away from the minimum of the
potential. The second excitation χ2 represents δψ which is transverse to φ0 in
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the (φ1, φ2) plane. This last excitation is known as a Goldstone boson14. The
Goldstone boson has a dispersion relation

ω2 = c2 k2 (432)

which vanishes at k = 0. The Goldstone boson dynamically restores the sponta-
neously broken U(1) symmetry since, at k = 0, it just corresponds to a change
of the value of the (static and uniform) broken symmetry field from (φ0, 0)
to the new direction (φ0, χ2). Therefore, if infinitely many zero-energy Gold-
stone bosons are excited in the system, the resulting state should correspond
to a new ground state with a different value of the phase. As noted by An-
derson15 prior to Goldstone’s work, the Goldstone theorem breaks down when
long-ranged interactions are present. Anderson was responsible for the concept
of mass generation through symmetry breaking due to the coupling with gauge
fields16. This concept was subsequently developed by Peter Higgs17 and Tom
Kibble and coworkers18.

8.2 The Kibble-Higgs Mechanism

We shall now consider the coupling of a scalar field ψ with charge q to a gauge
field Aµ. The Lagrangian density is related to the sum of the Lagrangian density
for the electromagnetic field and the Lagrangian density for the charged scalar
particle. The coupling between the fields is found from the minimum coupling
assumption

p̂µ → p̂µ′ = p̂µ − q

c
Aµ (433)

which becomes
i h̄ ∂µ → i h̄ ∂µ − q

c
Aµ (434)

Therefore, the Lagrangian density for the coupled fields has the form

L = ( ∂µ − i
q

h̄ c
Aµ ) ψ∗ ( ∂µ + i

q

h̄ c
Aµ ) ψ − 1

16 π
Fµ,ν Fµ,ν

−
(

m c

2 h̄ φ0

)2 (
ψ∗ ψ − φ2

0

)2

(435)

14J. Goldstone, Il Nuovo Cimento, 19, 154 (1961).
15P. W. Anderson, Phys. Rev., 112 1900 (1958).
16P.W. Anderson, “Plasmons, Gauge Invariance, and Mass”. Physical Review 130, 439

(1963).
17P.W. Higgs, “Broken Symmetries, Massless Particles and Gauge Fields”, Physics Letters,

12, 132 (1964): P.W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons”. Physical
Review Letters 13, 508 (1964):P.W. Higgs, “Spontaneous Symmetry Breaking without mass-
less Bosons”, Physical Review 145, 1156 (1966)

18G.S. Guralnik, C.R. Hagen, and T.W.B. Kibble, “Global Conservation Laws and Massless
Particles”. Physical Review Letters 13, 585-587 (1964): T.W.B. Kibble, “Symmetry Breaking
in non-Abelian Gauge Theories”, Physical Review, 155, 1554 (1967).
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The Lagrangian density is invariant under the local gauge transformation19

ψ → ψ
′

= exp

[
− i

q

h̄ c
Λ

]
ψ

Aµ → Aµ′ = Aµ + ∂µΛ (436)

where Λ = Λ(xµ) is a function of space-time. The system has minimum energy
when ψ has a constant value with a magnitude given by

| ψ | = φ0 (437)

and the Aµ vanish. Any local gauge transformation leads to a state with the
same energy, therefore, the ground state is infinitely degenerate.

We shall assume that a physical system spontaneously breaks the symmetry
in that it corresponds to a specific constant value of Λ. We shall choose the
local gauge Λ(x) such that the field ψ representing the excited states is purely
real. However, once the gauge has been fixed, no further gauge transformations
can be made.

The small amplitude excitations can be expressed as

ψ = φ0 + δψ (438)

The fluctuations can be expressed as

δψ = χ1 (439)

and on substituting in the Lagrangian and collecting the quadratic terms, one
obtains

LFree = ( ∂µχ1 ) ( ∂µχ1 ) −
(
m c

h̄

)2

χ2
1

− 1

16 π
Fµ,ν Fµ,ν +

(
q φ0

h̄ c

)2

Aµ A
µ (440)

Therefore, one finds that the charged boson field has a mass m and the gauge
field has acquired a mass mA given by

m2
A = 8 π

(
q φ0

c2

)2

(441)

Hence, by coupling an electromagnetic field with two components to a scalar
charged boson field, one has found a massive vector boson gauge-field with three
independent components. The massless spin-less component of the charged bo-
son field which described the Goldstone mode has become the longitudinal mode

19V. Fock, Z. Phys., 39, 226, (1927).
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of the gauge field. More specifically, the field χ2 which initially corresponded
to the Goldstone mode became unphysical when the massless vector field was
introduced as it could be gauged away. This is seen by writing

ψ = φ0 + χ1 + i χ2 ≈
(
φ0 + χ1

)
exp

[
i
χ2

φ0

]
(442)

so χ2 could be removed by a gauge transformation involving the particular
choice of Λ

Λ =
χ2(
q φ0

h̄ c

) (443)

9 Gravitational Interactions

We introduce the field theory of the Gravitational Interaction, in the weak field
limit, by analogy with electromagnetism. More specifically, we shall develop the
classical field theory of the massive graviton in parallel with the Proca’s theory
of a massive spin-one particle that we discussed previously. This approach has
the disadvantage that it does not have the same beautiful geometric basis as
Einstein’s field equations.

Electromagnetic fields are mediated by spin-one bosons and gravitational
fields are mediated by spin-two bosons. Electromagnetic forces between two-
particles with like charges is repulsive but Gravitational forces are always at-
tractive. These facts are quantified by Coulomb’s law

V (r1 − r2) =
q1 q2

| r1 − r2 | (444)

and Newton’s Force law

V (r1 − r2) = − G m1 m2

| r1 − r2 | (445)

where G is the gravitational constant. The value of G was first determined as
G = 6.754 × 10−11 m3 sec−2 kgm−1 by Henry Cavendish in 1798. However,
G remains the most poorly known physical constant. Recent high precision
measurements of G yield values with error bars that are mutually exclusive.
The high precision values differ in the third significant digit. The above two
potentials show that the electric and gravitational fields have the same type
of classical Green’s functions associated with massless bosons. Therefore, we
expect that the difference in the signs of the interaction is caused by the spin
values of the bosons involved in the exchanges. We shall examine the difference
of the signs of the electromagnetic and gravitational forces by examining the
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quantum propagators.

Consider (massive) electromagnetic radiation in the presence of a source.
The Lagrangian density formulated by Proca20 is given by

L = − 1

16 π
Fµ,ν Fµ,ν +

1

8 π

(
m c

h̄

)2

Aµ Aµ − 1

c
Aµ jµ (446)

where
Fµ,ν = ∂µ Aν − ∂ν Aµ (447)

The mass term spoils the gauge invariance of the source-free Lagrangian. The
action S is given by

S =

∫
d4x L (448)

which, on integrating by parts, can be expressed as

S =

∫
d4x

[
1

8 π
Aµ

(
∂ρ ∂

ρ +

(
m c

h̄

)2 )
gµ,ν − ∂µ ∂ν − 1

c
jν
]
Aν (449)

The equation of motion for the four-vector potential is

[ (
∂ρ ∂

ρ +

(
m c

h̄

)2 )
gµ,ν − ∂µ ∂ν

]
Aν =

4 π

c
jµ (450)

If charge is conserved
∂µ j

µ = 0 (451)

On operating on the equation of motion with ∂µ, one finds that because of the
finite mass the field Aν must satisfy the condition

∂ν Aν = 0 (452)

Thus, conservation of charge removes the choice of gauge. In the rest frame
of a photon, k = (m c

h̄
)(1, 0, 0, 0), so one has A0(k) = 0 and so one finds that

the massive photon has three components. This is expected for a particle with
spin S = 1. The electromagnetic propagator can be defined as the kernel of the
integral relation

Aν(x) =
4 π

c

∫
d4x′ Dν,λ(x, x

′) jλ(x′) (453)

Thus, the propagator satisfies the partial differential equation

[ (
∂ρ ∂ρ +

(
m c

h̄

)2 )
gµ,ν − ∂µ ∂ν

]
Dν,λ(x, x

′) = δµλ δ
4(x− x′) (454)

20A. Proca, C.R. Acad. Sci., Paris 203, 709-711 (1936), J. de Physique et Radium, 8, 23-28
(1937).
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which can be solved by Fourier transforming. On performing the Fourier trans-
formation, one finds the algebraic equation

[ (
− kρ k

ρ +

(
m c

h̄

)2 )
gµ,ν + kµ kν

]
Dν,λ(k) = δµλ (455)

which can be solved and has the solution

Dν,λ(k) =

(− gν,λ + kν kλ

( m c
h̄

)2

kρ kρ − (m c
h̄

)2

)
(456)

We shall determine the interaction mediated by the photon, by considering
the contribution to the energy density from two charges. For a static charge
density, the interaction energy can be expressed as minus half the interaction
Lagrangian. For static charges, the kinetic energy terms of the free-field La-
grangian do not contribute to the energy. Furthermore, since the static field
free Lagrangian is quadratic in the field, the equation of motion can be used to
show that it cancels half the interaction term which is linear in the field. The
interaction Lagrangian can be written as

Lint = − 1

c

∫
d3r jµ A

µ (457)

which, for t = 0, becomes

Lint = − 1

c

∫
dk′0

( 2 π )

∫
d4k

( 2 π )4
j∗µ(k

′
0, k) A

µ(k0, k) (458)

On eliminating the four-vector potential, the interaction portion of the La-
grangian can be expressed as

Lint = − 1

c

∫
dk′0

( 2 π )

∫
d4k

( 2 π )4
jν(k′0, k)

∗ 4 π

c

(− gν,λ + kν kλ

( m c
h̄

)2

kρ kρ − (m c
h̄

)2

)
jλ(k0, k)

(459)
Using the condition of continuity of charge

kν j
ν(k) = 0 (460)

the interaction can be written as

Lint = − 1

c

∫
dk′0

( 2 π )

∫
d4k

( 2 π )4
jν(k′0, k)

∗ 4 π

c

( − gν,λ
kρ kρ − (m c

h̄
)2

)
jλ(k0, k)

= +
4 π

c2

∫
dk′0

( 2 π )

∫
d4k

( 2 π )4

(
jν(k′0, k)

∗ jν(k0, k)

kρ kρ − (m c
h̄

)2

)
(461)

For two static charges, for which

ρ(k) = 2 π δ(k0) ρ(k) (462)
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one has

Lint =
4 π

c2

∫
d3k

( 2 π )3

(
ρ(k)∗ ρ(k)

− k2 − (m c
h̄

)2

)
(463)

Thus, the interaction Lagrangian between two like charges is negative and this
corresponds to a positive (replusive) interaction potential V .

The massive photon corresponds to fluctuations of the four-vector potential
Aν , which has four components. If we assume the continuity of charge, then the
four-vector potential must satisfy the gauge condition

kν Aν(k) = 0 (464)

Therefore, the massive photon has three independent components corresponding
to the three different Sz eigenvalues of an S = 1 particle. Consider the form of
the photon propagator

Dν,λ(k) =

(− gν,λ + kν kλ

( m c
h̄

)2

kρ kρ − (m c
h̄

)2

)
(465)

The numerator originates from the product of polarization vectors ǫα(k) for the
massive spin-one particle. The polarization vectors can can be chosen as

ǫ(1) = (0, 1, 0, 0)

ǫ(2) = (0, 0, 1, 0)

ǫ(3) = (0, 0, 0, 1) (466)

and for a photon at rest, one has

kν = ((
m c

h̄
), 0, 0, 0) (467)

The polarization four-vectors and the energy-momentum four-vector satisfy the
gauge condition

kν ǫαν (k) = 0 (468)

which is Lorentz invariant. The propagator involves a polarization vector ǫαν (k)
at the source where the photon is emitted. The photon then propagates at the
sink, where it is absorbed. The absorption involves the factor ǫαλ(k). Since the
polarization is not measured, it is summed over. Thus, the numerator of the
propagator is given by factor

∑

α

ǫαν (k) ǫαλ(k) (469)

Since this quantity transforms as a Lorentz tensor, it can only be expressed in
terms of the metric gν,λ and the product kν kλ. The combination can be fixed,
up to a normalization, by noting that since one must use the gauge condition

kν ǫαν (k) = 0 (470)
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the propagator must satisfy the condition

kν Dν,λ(k) = 0 (471)

Thus, if the propagator has the form

Dν,λ(k) =

(
A gν,λ + B kν kλ
kρ kρ − (m c

h̄
)2

)
(472)

the gauge condition requires that

A kλ + B kν kν kλ = 0 (473)

or

A + B

(
m c

h̄

)2

= 0 (474)

Therefore, the numerator of the propagator can be expressed as

A

(
gν,λ − kν kλ

(m c
h̄

)2

)
(475)

The constant of proportionality A can be fixed by considering the massive pho-
ton in its rest frame, and choosing one spatial index for ν and λ in the sum
over polarization components (eg. ν = λ = 1). This fixes A = −1. Thus, the
numerator of the photon propagator is given by

Gν,λ(k) =

(
− gν,λ +

kν kλ
(m c
h̄

)2

)
(476)

We have shown that the photon propagator is given by

Dν,λ(k) =

(
Gν,λ(k)

kρ kρ − (m c
h̄

)2

)
(477)

9.1 Mathematical Structure of General Relativity

The fully non-linear Einstein field equation is given by

Gµ,ν + Λ gµ,ν =
8 π G

c3
Tµ,ν (478)

where Λ is the cosmological constant, Gµ,ν is the Einstein tensor and Tµ,ν is the
energy-momentum tensor. The Einstein tensor is given in terms of the Ricci
tensor Rµ,ν via

Gµ,ν = Rµ,ν − 1

2
gµ,ν R (479)
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where the Ricci scalar R is defined as

R = gµ,ν Rµ,ν (480)

The Ricci tensor is obtained from the Riemann tensor via the contraction

Rµ,ν = Rλµ,λ,ν (481)

and the Riemann tensor is given in terms of the Christoffel symbols via

Rρσ,µ,ν = ∂µ Γρν,σ − ∂ν Γρµ,σ + Γρµ,λ Γλν,σ − Γρν,λ Γλµ,σ (482)

where, in turn, the Christoffel symbols Γσρ,µ are given in terms of the metric
tensors by

Γσρ,µ =
1

2
gσ,ρ

(
∂µ gν,ρ + ∂ν gρ,µ − ∂ρ gµ,ν

)
(483)

In the absence of a source, the Lagrangian density of the source-free gravitational
field is given by

L =
√−g R (484)

where g = det gµ,ν is negative.

9.2 Linearized Gravity

The graviton is supposed to correspond to a particle with spin S = 2. The field
of the graviton corresponds to the fluctuating part of the metric tensor hµ,ν .
Therefore, hµ,ν is the linearized part of a symmetric second-rank tensor, where
the lowest-order piece corresponds to the metric tensor ηµν for flat Minkowski
space. Thus

gµ,ν = ηµ,ν + hµ,ν (485)

where
hµ,ν ≪ 1 (486)

Since the metric tensor is symmetric, it has 10 independent components. How-
ever, under a general coordinate transformation

xµ → x′µ = xµ − Λµ (487)

the full metric changes according to

gµ,ν → g′µ,ν = gσ,τ
∂xσ

∂x′µ

∂xτ

∂x′ν
(488)

so the linearized metric transforms as

hµ,ν → h′µ,ν = hµ,ν + ∂µ Λν + ∂ν Λµ (489)
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Thus, both metrics describe the same physical gravitational field and so gravi-
tational theory has a gauge invariance. The gravitational gauge transformation
is very similar to the electromagnetic gauge transformation

Aµ → A′
µ = Aµ + ∂µ Λ (490)

We can use this similarity to motivate the expectation that a graviton has S = 2.
On introducing a mass for the photon, we found that charge is not automatically
conserved. Furthermore, we found that if one enforces charge conservation, then
the electromagnetic field must satisfy the gauge condition

∂µ Aµ = 0 (491)

Therefore, the four-vector potential has only three independent components as
expected for a massive spin-one particle. Likewise, on giving the graviton a
mass, one expects that the massive graviton’s field should satisfy four different
Lorentz gauge conditions

∂µ hµ,ν = 0 (492)

If hµ,ν is to represent a particle with S = 2, we anticipate that it must also be
traceless

ηµ,ν hµ,ν = 0 (493)

That is, a massive S = 2 graviton’s field must have 5 independent components
which correspond to the five different eigenvalues of Sz. Therefore, since the
field hµ,ν has 10 components, it must satisfy five conditions.

In the Lorentz gauge, the linearized Einstein equations reduce to the form

∂ρ ∂
ρ hµ,ν − 1

2
ηµ,ν ∂ρ ∂

ρ ησ,τ hσ,τ = −
(

16 π G

c3

)
Tµ,ν (494)

where the energy-momentum tensor Tµ,ν is assumed to be symmetric. On mul-
tiplying by ηµ,ν and summing over the indices µ and ν, one finds

( 1 − d

2
) ∂ρ ∂

ρ ησ,τ hσ,τ = −
(

16 π G

c3

)
ηµ,ν Tµ,ν (495)

where d = 4. This equation can be used to eliminate the second term in the
linearized equation of motion, leading to

∂ρ ∂
ρ hµ,ν = −

(
16 π G

c3

) (
Tµ,ν − 1

2
ηµ,ν η

σ,τ Tσ,τ

)
(496)

The second term in the source projects out unwanted components of the energy-
momentum tensor. For the vacuum, where Tµ,ν = 0, the linearized equations
take the form

∂ρ ∂
ρ hµ,ν = 0 (497)
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which is just the relativistic wave equation for a massless spin-two particle. For
a graviton of mass m, the wave equation could be expected to have the form

(
∂ρ ∂ρ +

(
m c

h̄

)2 )
hµ,ν = 0 (498)

9.3 The Massive S = 2 Graviton

The source-free equations of motion

(
∂ρ ∂ρ +

(
m c

h̄

)2 )
hµ,ν = 0 (499)

describing a massive S = 2 particle can be found by considering Fierz-Pauli
Lagrangian density for a symmetric second-rank tensor field21. The Lagrangian
density is given by

L = +
1

2
∂λ hµ,ν ∂

λ hµ,ν − 1

2
∂λ ηµ,ν h

µ,ν ∂λ ησ,τ h
σ,τ

− ∂µ hν,λ ∂
ν hµ,λ + ∂µ h

µ,ν ∂ν η
σ,τ hσ,τ

− 1

2

(
m c

h̄

)2 [
hµ,ν h

µ,ν − ηµ,ν hµ,ν η
σ,τ hσ,τ

]
(500)

up to a constant factor. The form of the mass term is not enforced by any known
symmetry. In fact, like the Proca Lagrangian for the massive photon, the mass
term in the Fierz-Pauli Lagrangian density violates the gauge symmetry. The
principle of extremal action leads to the equations of motion

0 = − ∂λ ∂
λ hµ,ν + ηµ,ν ∂λ ∂

λ ησ,τ h
σ,τ

+ ∂λ ∂
µ hλ,ν + ∂λ ∂

ν hλ,µ

− ∂µ ∂ν ησ,τ hσ,τ − ηµ,ν ∂σ ∂τ h
σ,τ

−
(
m c

h̄

)2 [
hµ,ν − ηµ,ν ησ,τ h

σ,τ

]
(501)

On operating on the equation with ∂µ and on noting that only the mass term
remains, one finds the equation

∂µ hµ,ν − ∂ν η
σ,τ hσ,τ = 0 (502)

This is a mandatory “Lorentz gauge” condition for linearized (massive) gen-
eral relativity. Here this is not a choice since the condition is enforced by the

21M. Fierz and W. Pauli, Proc. Roy. Soc. London, 187, 211-232 (1937).
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existence of the mass. Substituting this mandatory condition back into the
equations of motion yields

∂ρ ∂ρ hµ,ν − ∂µ ∂ν η
σ,τ hσ,τ +

(
m c

h̄

)2 (
hµ,ν − ηµ,ν η

σ,τ hσ,τ

)
= 0 (503)

On taking the trace of the above equation, if m 6= 0, one recovers the condition
that hµ,ν must be traceless

ηµ,ν hµ,ν = 0 (504)

as anticipated. Furthermore, this also implies the four mandatory “gauge con-
ditions”

∂µ hµ,ν = 0 (505)

must be satisfied. On applying the above five constraints to the equation of
motion, one finds (

∂ρ ∂ρ +

(
m c

h̄

)2 )
hµ,ν = 0 (506)

Thus, the Fierz-Pauli Lagrangian for hµ,ν does indeed describe a massive particle
with S = 2, and we have confirmed the form of the five conditions on the field.
In the presence of a source, the equation could be expected to have the form

(
∂ρ ∂ρ +

(
m c

h̄

)2 )
hµ,ν = −

(
16 π G

c3

)
T̃µ,ν (507)

where T̃µ,ν is an appropriate expression linear in the energy-momentum tensor
which radiates a tensor field with five independent components. The unwanted
components of T̃µ,ν must be projected out, similar to what we have done for
the linearized theory of general relativity. The propagator takes care of this
projection. The equation of motion is a linear equation with a source, so it can
be solved by introducing a propagator which satisfies the equation

(
∂ρ ∂ρ +

(
m c

h̄

)2 )
Dµ,ν;σ,τ (x, x

′) =
1

2

(
δσµ δ

τ
ν + δτµ δ

σ
ν

)
δ4(x−x′) (508)

so that the solution of the inhomogeneous equation can be written as

hµ,ν(x) =

(
16 π G

c3

) ∫
d4x′ Dµ,ν;σ,τ (x, x

′) Tσ,τ (x
′) (509)

which involves a convolution of the propagator with the source.

The above analysis implies that the Fourier transformed propagator for a
graviton with mass m must have the form

Dµ,ν;σ,τ (k) =

(
Bµ,ν;σ,τ (k)

kρ kρ − (m c
h̄

)2

)
(510)
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The graviton’s field is normalized according to

∑

α

ǫαµ,ν(k) ǫ
α
µ,ν(k) = Î (511)

The numerator of the graviton propagator must involve a combination which
transforms as a tensor under a Lorentz transformation. The propagator’s form
must be such that the symmetric tensor hµ,ν must satisfy the four gauge condi-
tions and be traceless. Using the five conditions repeatedly, one can show that
the numerator is proportional to

∑

α

ǫαµ,ν(k) ǫ
α
σ,τ (k) ∝

(
Gµ,σ(k)Gν,τ (k) +Gµ,τ (k)Gν,σ(k)

)
− 2

3
Gµ,ν(k)Gσ,τ (k)

(512)
where

Gµ,ν(k) =

(
− ηµ,ν +

kµ kν
(m c
h̄

)2

)
(513)

The sign of the propagator is fixed by considering a massive graviton in its rest
frame and setting µ = σ = 1 and ν = τ = 2. This leads to

Dµ,ν;σ,τ (k) =
1

2

[
(
Gµ,σ(k) Gν,τ (k) + Gµ,τ (k) Gν,σ(k)

)
− 2

3 Gµ,ν(k) Gσ,τ (k)

kρ kρ − (m c
h̄

)2

]

(514)
Einstein’s equation links the Riemann curvature, or equivalently hµ,ν , to the
metric tensor Tµ,ν . Since energy and momentum are conserved, in flat space
the energy-momentum tensor satisfies

∂µ T
µ,ν = 0 (515)

or, on Fourier transforming

kµ T
µ,ν(k) = 0 (516)

The above condition eliminates the the k-dependent terms in the propagator
when coupled to the energy-momentum tensor, so one can replace the Gµ,ν(k)
by − ηµ,ν . It should be noted that the energy density is positive

T 0,0(k) > 0 (517)

and for time-like indices η0,0 = 1. The interaction Lagrangian corresponding
to two static masses is given by

Lint = −
(

8 π G

c2

) ∫
d3k

( 2 π )3
T 0,0∗(0, k)

1 + 1 − 2
3

− k2 − (m c
h̄

)2 + i η
T 0,0(0, k)

(518)
so for static mass densities, the interaction Lagrangian is positive. Thus, the
gravitational interaction between two masses is attractive. However, after we
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have introduced the factor of − 1
2 to obtain the static interaction potential, we

that the result differs from the result expected from Newton’s law of gravity
by a factor of 4

3 . That is, one expects that the factor of 2
3 in the last term of

the propagator should be replaced by unity. The propagator corresponding to
the linearized theory of gravity (for which m = 0) does have the 2

3 replaced
by 1. Due to this discrepancy, we shall examine the connection between the
propagator and the source in more detail below.

9.4 The Sourced Equations

The Fierz-Pauli Lagrangian in the presence of a source can be written as

L = +
c4

32 π G

[
∂λ hµ,ν ∂

λ hµ,ν − ∂λ ηµ,ν h
µ,ν ∂λ ησ,τ h

σ,τ

− 2 ∂µ hν,λ ∂
ν hµ,λ + 2 ∂µ h

µ,ν ∂ν η
σ,τ hσ,τ

−
(
m c

h̄

)2 (
hµ,ν h

µ,ν − ηµ,ν hµ,ν η
σ,τ hσ,τ

) ]

− c hµ,ν T
µ,ν (519)

In the presence of a source, the Fierz-Pauli equation of motion becomes

−
(

16 π G

c3

)
Tµ,ν = ∂λ ∂

λ hµ,ν − ηµ,ν ∂λ ∂
λ ησ,τ h

σ,τ

− ∂λ ∂
µ hλ,ν − ∂λ ∂

ν hλ,µ

+ ∂µ ∂ν ησ,τ hσ,τ + ηµ,ν ∂σ ∂τ h
σ,τ

+

(
m c

h̄

)2 [
hµ,ν − ηµ,ν ησ,τ h

σ,τ

]
(520)

On operating on the equation with ∂µ and on noting that only the mass term
remains, one finds the equation

(
m c

h̄

)2 [
∂µ hµ,ν − ∂ν η

σ,τ hσ,τ

]
= −

(
16 π G

c3

)
∂µ T

µ,ν (521)

We see that in the absence of a graviton mass, the Lagrangian theory of the
graviton requires that the energy-momentum tensor must be conserved. For the
massive graviton, the conservation of energy and momentum is not automat-
ically ensured, but is an independent assumption. We shall assume that the
energy-momentum tensor remains a conserved quantity.

On assuming conservation of energy and momentum, one can substitute the
condition

∂µ hµ,ν − ∂ν η
σ,τ hσ,τ = 0 (522)
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into the equation of motion, yielding

∂ρ ∂ρ hµ,ν − ∂µ ∂ν η
σ,τ hσ,τ +

(
m c

h̄

)2 (
hµ,ν − ηµ,ν η

σ,τ hσ,τ

)
= −

(
16 π G

c3

)
Tµ,ν

(523)
Taking the trace, we find that

( d − 1 ) ησ,τ hσ,τ

(
m c

h̄

)2

=

(
16 π G

c3

)
ησ,τ Tσ,τ (524)

so that hµ,ν is not traceless in the presence of a source. On substituting the
trace in the condition, one finds that the four mandatory gauge conditions are
modified to become

∂µ hµ,ν =
1

d − 1

(
16 π h̄2 G

m2 c5

)
∂ν η

σ,τ Tσ,τ (525)

Thus, automatic conservation of energy and momentum and gauge invariance
appear to be linked. That is, when energy and momentum conservation has
to be inferred from other considerations, a specific gauge condition must be
enforced. Substituting the expression for the trace of hµ,ν into the equations of
motion leads to

∂ρ ∂ρ hµ,ν +

(
m c

h̄

)2

hµ,ν = −
(

16 π G

c3

) [
Tµ,ν −

1

d − 1

(
ηµ,ν +

∂µ ∂ν
(m c
h̄

)2

)
ησ,τ Tσ,τ

]

(526)
On Fourier transforming, one obtains

hµ,ν(k) =

(
16 π G
c3

)

kρ kρ − (m c
h̄

)2

[
Tµ,ν(k) −

1

d − 1

(
ηµ,ν −

kµ kν
(m c
h̄

)2

)
ησ,τ Tσ,τ (k)

]

(527)
or

hµ,ν(k) =

(
16 π G
c3

)

kρ kρ − (m c
h̄

)2

[
ηµ,σ ην,τ −

1

d − 1

(
ηµ,ν −

kµ kν
(m c
h̄

)2

)
ησ,τ

]
T σ,τ (k)

(528)
As we are assuming that energy and momentum are conserved

kµ Tµ,ν(k) = 0 (529)

the above equation can be re-written as

hµ,ν(k) =

(
16 π G
c3

)

kρ kρ − (m c
h̄

)2

[
Gµ,σ(k)Gν,τ (k) −

1

d − 1
Gµ,ν(k)Gσ,τ (k)

]
T σ,τ (k)

(530)
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Since hµ,ν is symmetric in the indices, one should also symmetrize the propa-
gator. The symmetrized propagator is given by

hµ,ν(k) =

(
8 π G
c3

)

kρ kρ − (m c
h̄

)2

[
Gµ,σ(k)Gν,τ (k) +Gµ,τ (k)Gν,σ(k) −

2

d − 1
Gµ,ν(k)Gσ,τ (k)

]
T σ,τ (k)

(531)
in agreement with the result of our previous calculation. The factor of 2

d−1 is a

real discrepancy with the m = 0 result which contains 2
d−2 . This discrepancy

is due to the fact that in the limit m → 0, the 5 excitations of the Fierz-Pauli
theory decouple into helicity ± 2 excitations, helicity ± 1 vector excitations and
a scalar particle. The vector particles do not mediate an interaction, but the
scalar particle does. The scalar particle is the so-called longitudinal graviton.
However, the theory with m exactly equal to zero only has two helicity ± 2
excitations and does not include the longitudinal graviton. The discontinuity
between them = 0 theory and the limitm→ 0 was investigated by Vainshtein22.

9.5 The Modes and Energies of Massive Gravitons

The Fierz-Pauli Lagrangian density

L = +
c4

32 π G

[
∂λ hµ,ν ∂

λ hµ,ν − ∂λ ηµ,ν h
µ,ν ∂λ ησ,τ h

σ,τ

− 2 ∂µ hν,λ ∂
ν hµ,λ + 2 ∂µ h

µ,ν ∂ν η
σ,τ hσ,τ

−
(
m c

h̄

)2 (
hµ,ν h

µ,ν − ηµ,ν hµ,ν η
σ,τ hσ,τ

) ]

(532)

can be re-written by integrating the third term by parts twice, leading to

L = +
c4

32 π G

[
∂λ hµ,ν ∂

λ hµ,ν − ∂λ ηµ,ν h
µ,ν ∂λ ησ,τ h

σ,τ

− 2 ∂ν hν,λ ∂µ h
µ,λ + 2 ∂µ h

µ,ν ∂ν η
σ,τ hσ,τ

−
(
m c

h̄

)2 (
hµ,ν h

µ,ν − ηµ,ν hµ,ν η
σ,τ hσ,τ

) ]

(533)

The vanishing of the trace and the mandatory gauge conditions obtained from
the equation of motion can be used to reduce the Lagrangian density to an
effective Lagrangian density

Leff = +
c4

32 π G

(
∂λ hµ,ν ∂

λ hµ,ν −
(
m c

h̄

)2

hµ,ν h
µ,ν

)

(534)

22A.I. Vainshtein, Phys. Lett. B, 39, 393-394 (1972).

86



Hence, the energy of the field can be expressed as

P0 =
c3

32 π G

∫
d3r

(
∂0 hµ,ν ∂0 h

µ,ν + ∇ hµ,ν .∇ hµ,ν +

(
m c

h̄

)2

hµ,ν h
µ,ν

)

(535)
or, on Fourier transforming,

P0 =
c3 π2

4 G

∫
d3k

(
k2
0 + k2 +

(
m c

h̄

)2 )
hµ,ν(k) h

µ,ν(k) (536)

so the energy is positive.

The fields are restricted by the four constraints

kµ hµ,ν(k) = 0 (537)

and the trace condition
ηµ,ν h

µ,ν(k) = 0 (538)

The four constraints lead to the elimination of the time-like components of the
tensor as independent variables since

h0,i(k) = −
∑

j

kj

k0
hi,j(k) (539)

and

h0,0(k) =
∑

i,j

ki

k0

kj

k0
hi,j(k) (540)

The trace condition is

h0,0(k) − h1,1(k) − h2,2(k) − h3,3(k) = 0 (541)

Therefore, we have three independent off-diagonal amplitudes h1,2, h1,3, and
h2,3. The independent diagonal amplitudes can be chosen as h3,3 and the dif-
ference h1,1−h2,2, since the sum h1,1 +h2,2 is determined in terms of h0,0−h3,3

by the trace condition. The energy-density was found to be proportional to

hµ,ν(k) h
µ,ν(k) (542)

which can be re-written in terms of the independent amplitudes as

hµ,ν(k) h
µ,ν(k) =

∣∣∣∣
∑

i,j

ki

k0

kj

k0
hi,j(k)

∣∣∣∣
2

− 2
∑

j

∣∣∣∣
∑

i

ki

k0
hi,j(k)

∣∣∣∣
2

+
∑

i,j

|hi,j(k)|2

(543)
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For k directed along the z-direction, one has

hµ,ν(k) h
µ,ν(k) =

(
k2

k2
0

− 1

)2

|h3,3(k)|2 − 2

(
k2

k2
0

− 1

)(
|h3,1(k)|2 + |h3,2(k)|2

)

+ 2 |h1,2(k)|2 + |h1,1(k)|2 + |h2,2(k)|2

=
3

2

(
k2

k2
0

− 1

)2

|h3,3(k)|2 − 2

(
k2

k2
0

− 1

)(
|h3,1(k)|2 + |h3,2(k)|2

)

+ 2 |h1,2(k)|2 +
1

2
| h1,1(k) − h2,2(k) |2 (544)

Thus, the massive graviton field has five independent components.

If one assumes that

k2
0 = k2 +

(
m c

h̄

)2

(545)

then one sees that the two off-diagonal modes h3,1(k) and h3,2(k) have an energy
proportional to

4

(
m c

h̄

)2 (
|h3,1(k)|2 + |h3,2(k)|2

)
(546)

It can be shown that the amplitudes do not diverge in the limit m → 0, so
these modes do not carry energy in this limit. The two modes have helicities of
Sz = ± 1. This can be seen by noting that the linear combinations

h3,1(k) ± i h3,2(k) (547)

transform as

h3,1(k)
′ ± i h3,2(k)

′ = exp[ ∓ i ϕ ]

(
h3,1(k) ± i h3,2(k)

)
(548)

under a rotation of ϕ around the z-axis. Thus, these combinations have angular
momenta of ± 1 around the z-axis. The physical effects of the modes h3,1(k)
and h3,2(k) vanish when m → 0.

The two modes h1,1(k)−h2,2(k) and h1,2(k) carry energy in the limit of zero
mass, have the helicity Sz = ± 2 and correspond to the graviton. That is, the
linear combination

(
h1,1(k) − h22(k)

2

)
± i h1,2(k) (549)

transform as

exp[ ∓ i 2 ϕ ]

[ (
h1,1(k) − h22(k)

2

)
± i h1,2(k)

]
(550)

under a rotation of ϕ around the z-axis and, thus, correspond to a helicity
Sz = ± 2.

88



The remaining mode h3,3(k) is the longitudinal graviton which corresponds
to Sz = 0. The amplitude of the longitudinal graviton is expected to diverge
in the limit m→ 0. This can be seen by examining the equation for the source
of the gravitational radiation

(
kρ kρ − (

m c

h̄
)2
)
hµ,ν(k) =

(
16 π G

c3

) [
ηµ,σ ην,τ −

1

d − 1

(
ηµ,ν −

kµ kν
(m c
h̄

)2

)
ησ,τ

]
T σ,τ (k)

(551)
and noting that, for k along the z-direction, the term in the source which di-
verges when m→ 0 only couples to h3,3(k). Thus, we have

h3,3(k) ∼ 1

(m c
h̄

)2
(552)

and, therefore, this mode yields a finite contribution to the energy. It is this
longitudinal mode which gives rise to the discontinuity at m = 0.

10 Quantization of the Electromagnetic Field

Following the work of Dirac23, the energy, momentum and angular momentum
of the electromagnetic field shall be reduced into contributions from a set of
normal modes. A particular normal mode will correspond to a particular wave
vector and a particular polarization of the field. The normal modes can be
described in terms of a set of harmonic oscillators and, when quantized, the
normal modes will be described by quantum mechanical harmonic oscillators.

In the absence of sources, the (classical) wave equation for the vector poten-
tial has the form [

− ∇2 +
1

c2
∂2

∂t2

]
A = 0 (553)

when the Coulomb gauge condition is imposed

∇ . A = 0 (554)

The Fourier transformation, with respect to space is defined as

A(k, t) =
1√
V

∫
d3r exp

[
i k . r

]
A(r, t) (555)

23P. A. M. Dirac, Proc. Roy. Soc. A 114, 243 (1927).
In this paper Dirac uses two different approaches to quantizing electromagnetism. In one
approach he treated a single photon as satisfying a single-particle Schrödinger equation, that
has a similar form to Maxwell’s equations. The other approach treated the fields as dynamical
variables and then quantized them. Dirac then showed that these two methods produce
equivalent results. By doing this, Dirac created second quantization.
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where V is the volume of the system. The inverse Fourier Transform is given
by

A(r, t) =
1√
V

∑

k

exp

[
− i k . r

]
A(k, t) (556)

On Fourier transforming the wave equation with respect to space and time, one
finds the equation of motion

[
k2 +

1

c2

(
∂2

∂t2

) ]
A(k, t) = 0 (557)

and the Coulomb gauge condition becomes

k . A(k, t) = 0 (558)

We shall look for solutions for A(k, t) that have a time dependence given by
linear superpositions of the terms proportional to

exp

[
∓ i ωk t

]
(559)

By substituting the above terms into the wave equation, it is found that linear
superpositions of plane-waves are solutions of Maxwell’s equation but only if
the frequency ωk and wave vector k are related via the dispersion relation

ω2
k = c2 k2 (560)

The gauge condition also requires that the vector potential is oriented perpen-
dicular to the direction of propagation. Therefore, an arbitrary plane-wave
solution can be represented as a linear superposition of two polarized waves
with polarizations described by two mutually orthogonal unit vectors denoted
by ǫ̂α(k). The polarization vectors satisfy

k . ǫ̂α(k) = 0

ǫ̂α(k) . ǫ̂β(k) = δα,β (561)

We shall assume that three vectors

(
k, ǫ̂1(k), ǫ̂2(k)

)
form a mutually orthogonal

coordinate system. We shall define

ǫ̂1(−k) = ǫ̂1(k)

ǫ̂2(−k) = ǫ̂2(k) (562)

The algebraic equations for A(k) can be solved trivially. One can express the
vector potential as a linear superposition

A(r, t) =
1√
V

∑

k,α

ǫ̂α(k) exp

[
− i k . r

]
Φα(k, t) (563)
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E
B

k

Figure 9: The normal modes of the classical electromagnetic field are plane-
polarized waves, in which E and B are transverse to the direction of propagation
k, and oscillate in phase.

However, since the vector potential is real

A(r, t) = A∗(r, t) (564)

one must have
Φα(k, t) = Φ∗

α(−k, t) (565)

Therefore, if Φα(k) and Φ∗
α(k) are to be considered as being independent fields,

then one must restrict k to have values in a volume of k-space that does not
contain both k and −k for any fixed value of k. This curiosity is associated with
the fact that, for purely real fields, particles are identical to their anti-particles.

10.1 The Lagrangian and Hamiltonian Density

The Lagrangian density L for the electromagnetic field can be expressed as

L =
1

8 π

[
E2 − B2

]
(566)

in the Coulomb gauge, the electromagnetic field is given by

E = − 1

c

∂A

∂t
B = ∇ ∧ A (567)

Hence, the Lagrangian density is expressed as

L =
1

8 π

[
1

c2

(
∂A

∂t

)2

−
(

∇ ∧ A

)2 ]
(568)
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The Lagrangian is given by the space integral of the Lagrangian density

L =

∫
d3r L (569)

On substituting A(r, t) in the form of eqn(563) and integrating over r and using
the identity

1

V

∫
d3r exp

[
i ( k + k′ ) . r

]
= δk+k′ (570)

one finds the Lagrangian is given by

L =
1

8 π

∑

k,k′

∑

α,β

δk+k′

×
[
ǫ̂α(k) . ǫ̂β(k

′)
1

c2

(
∂Φα(k)

∂t

) (
∂Φβ(k

′)

∂t

)

+ ( k ∧ ǫα(k) ) . ( k′ ∧ ǫβ(k
′) ) Φα(k) Φβ(k

′)

]

=
1

8 π

∑

k,α

[
1

c2

(
∂Φ∗

α(k)

∂t

) (
∂Φα(k)

∂t

)
− k2 Φ∗

α(k) Φα(k)

]

(571)

In the above expression, the summation over k is unrestricted. If the Lagrangian
is to be expressed in terms of the independent components, then the summation
over k must be restricted to half the set of allowed values. With this restriction,

k

-k

Figure 10: A possible partition of k-space, which does not contain both k and
its inverse −k.

one obtains

L =
2

8 π

∑

k,α

′

[
1

c2

(
∂Φ∗

α(k)

∂t

) (
∂Φα(k)

∂t

)
− k2 Φ∗

α(k) Φα(k)

]

(572)
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where the prime over the summation denotes the restriction of k to values
in the “positive” half volume of k-space. Since there are half the number of
independent normal modes, their contributions are twice as big. The Lagrangian
is a function of the six generalized variables Φα(k) and Φ∗

α(k) for the independent
k values. The generalized momenta variables are found as

Πα(k) =
2

8 π c2

(
∂Φ∗

α(k)

∂t

)

Π∗
α(k) =

2

8 π c2

(
∂Φα(k)

∂t

)
(573)

The Lagrangian equations of motion of the field are given by

∂

∂t

[
1

8 π c2

(
∂Φα(k)

∂t

) ]
= − k2

8 π
Φα(k) (574)

or (
∂2Φα(k)

∂t2

)
= − ω2

k Φα(k) (575)

where ωk = c k. Thus, the classical field Φα(k) has a time-dependent ampli-
tude which resembles that of a harmonic oscillator with frequency ωk = c k.
The Hamiltonian can be obtained from the Lagrangian, via the Legendre Trans-
formation

H =
∑

k,α

′
[

Π∗
α(k)

∂Φ∗
α(k)

∂t
+ Πα(k)

∂Φα(k)

∂t

]
− L (576)

which leads to the explicit expression for the Hamiltonian

H =
∑

k,α

′
[

8 π c2

2
Π∗
α(k) Πα(k) +

2

8 π
k2 Φ∗

α(k) Φα(k)

]
(577)

where the summation over (k, α) runs over the independent normal modes.
Hence, the k summation only runs over the set of points in k space which are
not related via the inversion operator. The Hamiltonian is related to the energy
of the electromagnetic field, as shall be seen below.

The energy density H for the electromagnetic field can be expressed as

H =
1

8 π

[
E2 + B2

]
(578)

in the Coulomb gauge. The energy density can be written in terms of the vector
potential as

H =
1

8 π

[
1

c2

(
∂A

∂t

)2

+

(
∇ ∧ A

)2 ]
(579)
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The energy is the integral of the energy density over all space

H =

∫
d3r H (580)

When expressed in terms of the generalized coordinates and the generalized
momenta, the energy reduces to the expression

H =
∑

k,α

[
8 π c2

4
Πα(k) Π∗

α(k) +
1

8 π
k2 Φ∗

α(k) Φα(k)

]
(581)

in which the summation over k is unrestricted. Thus, the above expression for
the energy is identical to the Hamiltonian for the electromagnetic field. Fur-
thermore, the Hamiltonian has been expressed in terms of a set of the normal
modes labeled by (k, α).

10.2 Quantizing the Normal Modes

The quantized Hamiltonian is obtained from the classical Hamiltonian by re-
placing the field components and their canonically conjugate momenta

Φα(k) , Πα(k) (582)

by the operators
Φ̂α(k) , Π̂α(k) (583)

and their complex conjugates are replaced by the Hermitean conjugate opera-
tors. The canonically conjugate coordinates and momenta operators satisfy the
commutation relations

[ Φ̂α(k) , Π̂β(k
′) ] = i h̄ δα,β δk,k′

[ Π̂α(k) , Π̂β(k
′) ] = 0

[ Φ̂α(k) , Φ̂β(k
′) ] = 0 (584)

The quantized Hamiltonian for the electromagnetic field is given by

Ĥ =
∑

k,α

[
8 π c2

4
Π̂α(k) Π̂†

α(k) +
1

8 π
k2 Φ̂†

α(k) Φ̂α(k)

]
(585)

The Hamiltonian can be factorized by introducing the annihilation operators

âk,α =
1√
2

[
i

√
8 π c2

2 h̄ ωk
Π̂α(k) +

√
2 k2

8 π h̄ ωk
Φ̂†
α(k)

]
(586)

and the Hermitean conjugate operators

â†k,α =
1√
2

[
− i

√
8 π c2

2 h̄ ωk
Π̂†
α(k) +

√
2 k2

8 π h̄ ωk
Φ̂α(k)

]
(587)
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known as creation operators. The commutation relations for the creation and
annihilation operators can be obtained directly from the commutation relations
of the field operators Φ̂α(k) and Π̂α(k) which are shown in eqn(584). It can
be shown that the creation and annihilation operators satisfy the commutation
relations

[ âk,α , â
†
k′,β

] = δα,β δk,k′

[ â†k,α , â
†
k′,β

] = 0

[ âk,α , âk′,β ] = 0 (588)

The field operators can be expressed in terms of the creation and annihilation
operators. Starting with

âk,α =
1√
2

[
i

√
8 π c2

2 h̄ ωk
Π̂α(k) +

√
2 k2

8 π h̄ ωk
Φ̂†
α(k)

]
(589)

transforming k → −k and then by noting that Π̂α(−k) = Π̂†
α(k) and Φ̂†

α(−k) =
Φ̂α(k), one finds

â−k,α =
1√
2

[
i

√
8 π c2

2 h̄ ωk
Π̂†
α(k) +

√
2 k2

8 π h̄ ωk
Φ̂α(k)

]
(590)

One can eliminate Π̂†
α(k) by adding the expression for the creation operator

given by eqn(587) and the expression for the annihilation operator with mo-
mentum −k given by eqn(590). This process yields the expression for the field
component operators Φ̂α(k) in the form

Φ̂α(k) =

√
2 π h̄ ωk

k2

(
â†k,α + â−k,α

)
(591)

and, by an analogous procedure, the Hermitean conjugate operator is found to
be given by

Φ̂†
α(k) =

√
2 π h̄ ωk

k2

(
âk,α + â†−k,α

)
(592)

which is identical to Φ̂α(−k). Likewise, the canonically conjugate momenta
operators are given by

Π̂α(k) = i

√
h̄ ωk
8 π c2

(
â†−k,α − âk,α

)
(593)

and their Hermitean conjugates are

Π̂†
α(k) = − i

√
h̄ ωk
8 π c2

(
â−k,α − â†k,α

)
(594)

as was anticipated.
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10.2.1 The Energy of the Field

The Hamiltonian of the electromagnetic field

Ĥ =
∑

k,α

[
8 π c2

4
Π̂α(k) Π̂†

α(k) +
1

8 π
k2 Φ̂†

α(k) Φ̂α(k)

]
(595)

can be expressed in terms of the creation and annihilation operators as

Ĥ =
∑

k,α

h̄ ωk
4

[ (
â†−k,α − âk,α

) (
â−k,α − â†k,α

)

+

(
â†k,α + â−k,α

) (
âk,α + â†−k,α

) ]

=
∑

k,α

h̄ ωk
4

[
â†k,α âk,α + âk,α â

†
k,α + â†−k,α â−k,α + â−k,α â

†
−k,α

]

(596)

If one sets k → −k in the second set of terms, then one finds the Hamiltonian
becomes the sum over independent harmonic oscillators for each k value and
polarization

Ĥ =
∑

k,α

h̄ ωk
2

[
â†k,α âk,α + âk,α â

†
k,α

]
(597)

The number operator for each normal mode is given by

n̂k,α = â†k,α âk,α (598)

and has integer eigenvalues denoted by nk,α. Hence, the energy eigenvalues E
are given by

E =
∑

k,α

h̄ ωk

(
nk,α +

1

2

)
(599)

The energy of the electromagnetic field is quantized in units of h̄ ωk = h̄ c k.
The quanta are known as photons.

It should be noted that the contributions to the total energy from the zero-
point energy terms h̄ωk

2 diverge. However, in most circumstances, only the
excitation energy of the field is measurable, hence the divergence is mainly ir-
relevant. The zero-point energy does have physical consequences, and can be
observed if the volume or boundary conditions of the field are changed. The
change in the zero-point energy of the field due to change in volume or boundary
conditions is known as the Casimir effect24.

24H. B. G. Casimir, Proc. Neth. Aka. Wetenschapen, 51, 793 (1948), M. J. Sparnaay,
Physica 24, 761 (1959)
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10.2.2 The Electromagnetic Field

The quantized vector potential is given by the operator Â(r), given by

Â(r) =
∑

k,α

ǫ̂α(k)

√
2 π h̄ c2

ωk V

(
â†k,α + â−k,α

)
exp

[
− i k . r

]
(600)

In the Heisenberg representation, the time dependence of the vector potential
is found from

i h̄
∂A(r, t)

∂t
= [ A(r, t) , Ĥ ] (601)

which has the solution

Â(r, t) = exp

[
+ i

t

h̄
Ĥ

]
Â(r, 0) exp

[
− i

t

h̄
Ĥ

]
(602)

or

Â(r, t) =
∑

k,α

ǫ̂α(k)

√
2 π h̄ c2

ωk V

(
â†k,α exp

[
i ωk t

]
+ â−k,α exp

[
− i ωk t

] )
exp

[
− i k . r

]

(603)

The above equation was obtained by noting that, in the basis composed of
eigenstates of the number operators |nk,α >, one has

âk,α(t) |nk,α > = exp

[
+ iωkt (â†k,αâk,α + 1/2)

]
âk,α(0) |nk,α > exp

[
− iωkt (nk,α + 1/2)

]

= exp

[
+ iωkt (nk,α − 1/2)

]
√
nk,α |nk,α − 1 > exp

[
− iωkt (nk,α + 1/2)

]

= exp

[
− i ωk t

]
âk,α |nk,α > (604)

and that the time-dependent creation operator is given by the Hermitean con-
jugate expression. Thus, the explicit form of time dependence of the vector
potential is a consequence of the explicit time dependence of the creation and
annihilation operators in the Heisenberg representation. Alternatively, one can
find the time dependence of the creation and annihilation operators directly
from the Heisenberg equations of motion without invoking a privileged set of
basis states. The equation of motion for the creation operator is given by

i h̄
∂â†k,α
∂t

= [ â†k,α , Ĥ ] (605)

and the commutator is evaluated as

[ â†k,α , â
†
k′,β

âk′,β ] = − â†k,α δα,β δk,k′ (606)

97



so the equation of motion simplifies to

i h̄
∂â†k,α
∂t

= − h̄ ωk â
†
k,α (607)

Therefore, one finds the result

â†k,α(t) = â†k,α exp

[
i ωk t

]
(608)

Likewise, the annihilation operator satisfies the equation of motion

i h̄
∂âk,α

∂t
= [ âk,α , Ĥ ] (609)

and as
[ âk,α , â

†
k′,β

âk′,β ] = + âk,α δα,β δk,k′ (610)

so the equation of motion simplifies to

i h̄
∂âk,α

∂t
= + h̄ ωk âk,α (611)

Hence, one finds that the time-dependent annihilation operator is given by

âk,α(t) = âk,α exp

[
− i ωk t

]
(612)

which is just the Hermitean conjugate of the â†k,α(t) that was found previously.
Therefore, the time-dependence of the vector potential is entirely due to the
time-dependence of the Heisenberg representation of the creation and annihila-
tion operators.

10.2.3 The Momentum of the Field

The total momentum operator for the electromagnetic field is given by the
integral over all space of the Poynting vector

P̂ =
1

4 π c

∫
d3r

(
Ê ∧ B̂

)
(613)

This will be evaluated by expressing the Ê and B̂ field operators in terms of the
vector potential A operator via

Ê = − 1

c

∂Â

∂t

B̂ = ∇ ∧ Â (614)
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The vector potential operator can be written in terms of the creation and anni-
hilation operators for the normal modes as

Â(r, t) =
∑

k,α

ǫ̂α(k)

√
2 π h̄ c2

ωk V

(
â†k,α(t) + â−k,α(t)

)
exp

[
− i k . r

]
(615)

then the E and B field operators are found as

Ê(r) = − i
∑

k,α

ǫ̂α(k)

√
2 π h̄ ωk

V

(
â†k,α − â−k,α

)
exp

[
− i k . r

]
(616)

and

B̂(r) = − i
∑

k,α

( k ∧ ǫ̂α(k) )

√
2 π h̄ c2

ωk V

(
â†k,α + â−k,α

)
exp

[
− i k . r

]

(617)
For a fixed k, the polarization vectors ǫ̂α(k) and k are mutually orthogonal.
Therefore, one has

ǫ̂α(k) ∧ ( k ∧ ǫ̂β(k) ) = k ( ǫ̂α(k) . ǫ̂β(k) ) − ǫ̂β(k) ( k . ǫ̂α(k) )

= k δα,β (618)

Hence, the total momentum of the electromagnetic field is determined from

P̂ =
h̄

2

∑

k,α

ǫ̂α(k) ∧ ( k ∧ ǫ̂α(k) )

(
â†k,α − â−k,α

) (
â†−k,α + âk,α

)

=
h̄

2

∑

k,α

k

(
â†k,α − â−k,α

) (
â†−k,α + âk,α

)
(619)

It should be noted that the momentum from each normal mode of the field is
parallel to its direction of propagation. Since the creation operators commute

â†k,α â
†
−k,α = â†−k,α â

†
k,α (620)

and that the annihilation operators also commute

â−k,α âk,α = âk,α â−k,α (621)

one finds that the part of the momentum represented by the summation over k
given by

h̄
∑

k,α

k

(
â†k,α â

†
−k,α − â−k,α âk,α

)
= 0 (622)

vanishes since the summand is odd under inversion symmetry. Thus, the mo-
mentum of the electromagnetic field is given by

P̂ =
h̄

2

∑

k,α

k

(
â†k,α âk,α − â−k,α â

†
−k,α

)

=
1

2

∑

k,α

(
h̄ k â†k,α âk,α − h̄ k â†−k,α â−k,α − h̄ k

)
(623)

99



where the commutation relations for the creation and annihilation operators
were used to obtain the last line. The last term vanishes when summed over k,
due to inversion symmetry. Hence, the momentum of the field is given by the
operator

P̂ =
1

2

∑

k,α

(
h̄ k â†k,α âk,α − h̄ k â†−k,α â−k,α

)
(624)

Finally, on transforming −k to k in the last term of the summand, one finds the
total momentum of the field is carried by the excitations since

P̂ =
∑

k,α

h̄ k â†k,α âk,α (625)

Thus, each quantum excitation of wave vector k has momentum h̄ k.

Since a photon has an energy h̄ c k and momentum h̄ k, these quanta are
massless because the mass of the quanta are defined as the relativistic invariant
length of the momentum four-vector

(
E

c

)2

− p2 = m2 c2 (626)

which yields m = 0. The energy-momentum dispersion relation of the quanta
of the electromagnetic field was conclusively demonstrated by A. H. Compton25.
Compton showed that when quanta are scattered by charged particles, the pho-
ton’s dispersion relation follows directly by application of conservation laws to
the recoiling particle.

10.2.4 The Angular Momentum of the Field

The total angular momentum operator of the electromagnetic field ĴEM is given
by

ĴEM =
1

4 π c

∫
d3r

(
r ∧ ( Ê ∧ B̂ )

)
(627)

The i-th component is given by

Ĵ
(i)
EM =

1

4 π c

∫
d3r ξi,j,k

(
x(j) ( Ê ∧ B̂ )(k)

)

=
1

4 π c

∫
d3r ξi,j,k

(
x(j) ξk,l,m Ê(l) B̂(m)

)

=
1

4 π c

∫
d3r ξi,j,k

(
x(j) ξk,l,m Ê(l) ξm,n,p

∂Â(p)

∂x(n)

)

(628)

25A. H. Compton, Phys. Rev. Second Series, 21, 483 (1923).
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However, due to the identity

ξk,l,m ξm,n,p =

(
δk,n δl,p − δk,p δl,n

)
(629)

one finds

Ĵ
(i)
EM =

1

4 π c

∫
d3r ξi,j,k

(
x(j) Ê(l) ∂Â

(l)

∂x(k)
− x(j) Ê(l) ∂Â

(k)

∂x(l)

)
(630)

On integrating by parts in the last term, one has

Ĵ
(i)
EM =

1

4 π c

∫
d3r ξi,j,k

(
x(j) Ê(l) ∂Â

(l)

∂x(k)
+

∂

∂x(l)

(
x(j) Ê(l)

)
Â(k)

)

(631)

Since the divergence of the electric field vanishes26,

∂Ê(l)

∂x(l)
= 0 (634)

and since
∂x(j)

∂x(l)
= δj,l (635)

the total angular momentum can be re-written as

Ĵ
(i)
EM =

1

4 π c

∫
d3r ξi,j,k

(
Ê(l) x(j) ∂Â

(l)

∂x(k)
+ Ê(j) Â(k)

)
(636)

The first term can be recognized as the orbital angular momentum of the field.
The orbital angular momentum operator L̂(i) is given by

L̂(i) = − i h̄ ξi,j,k x(j) ∂

∂x(k)
(637)

so the total angular momentum of the field is given by

Ĵ
(i)
EM =

i

4 π h̄ c

∫
d3r

(
Ê(l) L̂(i) Â(l) − i h̄ ξi,j,k Ê(j) Â(k)

)

=
i

4 π h̄ c

∫
d3r

(
Ê(l) L̂(i) Â(l) + Ê(j) ( Ŝ(i) )j,k Â(k)

)
(638)

26In the presence of a charge density q |ψ(r)|2, the angular momentum of the EM field will
contain a term given by

−
q

c

∫
d3r ψ∗(r) r ∧ A(r) ψ(r) (632)

which is gauge-dependent. This term combines with a corresponding term in the expression
for the orbital angular momentum of the charged particles to yield the gauge-invariant term∫

d3r ψ∗(r) r ∧ ( p̂ −
q

c
A(r) ) ψ(r) (633)

Hence, although the total angular momentum of a system of charged particles in an electro-
magnetic field is well-defined and gauge-invariant, there could be some confusion as to how
the angular momentum is distributed between the particles and the field.
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where the definition
( Ŝ(i) )j,k = − i h̄ ξi,j,k (639)

for Ŝ, the intrinsic spin operator for the photon, has been used in obtaining the
second line. The total vector angular momentum operator can be expressed as

ĴEM =
i

4 π h̄ c

∫
d3r Ê(j)

(
L̂ δj,k + ( Ŝ )j,k

)
Â(k) (640)

which shows that the orbital angular momentum is diagonal with respect to
the field components and the spin angular momentum mixes the different field
components.

The total spin component of the angular momentum operator for the elec-
tromagnetic field is given by

Ŝ
(i)
EM =

i

4 π h̄ c

∫
d3r

(
Ê(j) ( Ŝ(i) )j,k Â(k)

)

=
1

4 π c

∫
d3r ξi,j,k Ê(j) Â(k)

=
1

4 π c

∫
d3r

(
Ê ∧ Â

)(i)

(641)

This can be expressed in terms of the photon creation and annihilation operators
as

Ŝ
(i)
EM = − i

h̄

2

∑

k,α,β

(
ǫ̂
(j)
β (k) ξi,j,k ǫ̂(k)α (k)

)

×
(
â†−k,β − âk,β

) (
â†k,α + â−k,α

)
(642)

The first term in parenthesis is recognized as the i-th component of the vector
product

ǫ̂β(k) ∧ ǫ̂α(k) (643)

and, therefore, it is antisymmetric in the polarization indices α and β and the
non-zero contributions are restricted to the case α 6= β. Since the creation
and annihilation operators corresponding to different polarizations commute,
the product of the two remaining parenthesis can be re-arranged as the sum of
two terms

Ŝ
(i)
EM = − i

h̄

2

∑

k,α,β

(
ǫ̂β(k) ∧ ǫ̂α(k)

)(i)

×
[ (

â†−k,β â
†
k,α − âk,β â−k,α

)

+

(
â†−k,β â−k,α − â†k,α âk,β

) ]
(644)
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On transforming the summation variable k → −k and commuting the operators,
one finds that the first term in the square brackets is symmetric under the
interchange of α and β whereas the second term is antisymmetric. Hence, on
summing over the polarization indices, the contribution from the first term
vanishes, as it is the product of a symmetric and the antisymmetric (vector
product) term. Therefore, the total spin operator of the electromagnetic field is
expressed as

Ŝ
(i)
EM = i

h̄

2

∑

k,α,β

(
ǫ̂β(k) ∧ ǫ̂α(k)

)(i) (
â†k,α âk,β − â†−k,β â−k,α

)

(645)

On defining the sense of the polarization vectors relative to k̂ (≡ ê3(k) the unit
vector in the direction of propagation) via

(
ǫ̂1(k) ∧ ǫ̂2(k)

)
= k̂ (646)

so that k̂ corresponds to the z-direction, one finds that

ŜEM = i
h̄

2

∑

k

[
k̂

(
â†k,2 âk,1 − â†k,1 âk,2

)

− k̂

(
â†−k,2 â−k,1 − â†−k,1 â−k,2

) ]
(647)

On setting −k → k in the second part of the summation, the spin of the elec-
tromagnetic field is found as

ŜEM = i h̄
∑

k

k̂

(
â†k,2 âk,1 − â†k,1 âk,2

)
(648)

It should be noted that in this expression, the indices (1, 2) refer to directions
in three-dimensional space and do not refer to the z-component of the spin an-
gular momentum. Therefore, the above equation shows that a plane-polarized
photon is not an eigenstate of the single-particle spin operator quantized along
the k-axis27.

In our Cartesian component basis, the eigenstates of the component of the
spin operator parallel to the direction of propagation Ŝ(3), where

Ŝ(3) = h̄




0 −i 0
i 0 0
0 0 0


 (649)

27Strictly speaking, this quantum number corresponds to the helicity as it is the spin eigen-
value which is quantized along the direction of propagation.
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are given by Φ̃m(k), where

Φ̃+1(k) = − 1√
2




1
i
0




Φ̃0(k) =




0
0
1




Φ̃−1(k) =
1√
2




1
− i
0


 (650)

and where the subscript m refers to the eigenvalue of Ŝ(3), in units of h̄. From
this, it follows that an arbitrary transverse vector wave function Φ(k) can only
be expressed as a linear superposition of states involving m = ±1, and that the
m = 0 component is absent. On expressing an arbitrary (non-transverse) vector
wave function Φ(k) with components Φ(1)(k), Φ(2)(k) and Φ(3)(k) in terms of
its components referred to the helicity eigenstates Φm(k) one has




Φ+1(k)
Φ0(k)

Φ−1(k)


 =

1√
2




− 1 i 0

0 0
√

2
1 i 0






Φ(1)(k)
Φ(2)(k)
Φ(3)(k)


 (651)

This relation between the two bases can be expressed in the alternate form

Φ(k) =
m=1∑

m=−1

êm Φm(k) (652)

where the circularly-polarized unit vectors are introduced via

ê+1 = − 1√
2

( ǫ̂1(k) + i ê2(k) )

ê0 = ǫ̂3(k)

ê−1 =
1√
2

( ǫ̂1(k) − i ǫ̂2(k) ) (653)

The circularly-polarized unit vectors are associated with photons which have
definite helicity eigenvalues. It should be noted that these complex unit vectors
are orthogonal, and satisfy

ê∗m′ . êm = δm,m′ (654)

The above relations allow one to define the circularly-polarized creation and
annihilation operators via their relation to the quantum fields. This procedure
yields

i=3∑

i=1

ǫ̂i(k) âk,i =
m=1∑

m=−1

êm(k) âk,m (655)
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Hence, the photon annihilation operators corresponding to a definite helicity
are related to the annihilation operators for plane-polarized photons via

âk,m=+1 = − 1√
2

( âk,1 − i âk,2 )

âk,m=0 = âk,3

âk,m=−1 =
1√
2

( âk,1 + i âk,2 ) (656)

and the inverse relations are given by

âk,1 = − 1√
2

( âk,m=1 − âk,m=−1 )

âk,2 = − i√
2

( âk,m=1 + âk,m=−1 )

âk,3 = âk,m=0 (657)

When expressed in terms of the circularly-polarized unit vectors, the spin oper-
ator for the electromagnetic field becomes

ŜEM = h̄
∑

k

k̂

(
â†k,m=1 âk,m=1 − â†k,m=−1 âk,m=−1

)
(658)

which is expressed in terms of photons with definite helicity. Within the man-
ifold of single-photon states with momentum h̄ k, the spin operator has eigen-
values of ±h̄ when measured along the direction k̂. It is seen that the photon
has helicity m = ±1 but does not involve the helicity state with m = 0 since
the electromagnetic field is transverse. The transverse nature of the field is due
to the photon being massless. In general, a massive particle with spin S should
have (2S + 1) helicity states. However, a massless particle can only have the
two helicity states corresponding to m = ±S.

The angular momentum of the elementary excitation of the electromagnetic
field was inferred from experiments in which beams of circularly-polarized light
were absorbed by a sensitive torsional pendulum28. Quantum electromagnetic
theory shows that the angular momentum density of left circularly-polarized
light is just h̄ times the photon density or, equivalently, is just ω−1 times the
energy density which is also the case for classical electromagnetism29. Hence, the
net increase of angular momentum per unit time can easily be calculated from
the excess of the angular momentum flux flowing into the pendulum over that
flowing out. Beth’s experiments verified that the net torque on the pendulum
was consistent with the theoretical prediction. Thus, the quantized electromag-
netic field has been shown to be related to a massless particle with spin h̄ and
energy-momentum given by the four-vector (h̄ωk/c, h̄k). This particle is the
photon. Every quantized field is to be associated with a type of particle.

28R. A. Beth, Phys. Rev. 50, 115 (1936).
29J. H. Poynting, Proc. Roy. Soc. A82, 560 (1909).
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Figure 11: The circularly-polarized normal modes of a classical electromag-
netic field are composed of two plane-polarized waves which are out of phase,
are mutually orthogonal, and are transverse to the direction of propagation k.
The resulting electric field spirals along the direction of propagation. The left
circularly-polarized wave shown in the diagram corresponds to a helicity of +h̄.

10.3 Uncertainty Relations

The eigenstates of the field operators such as Â(r, t) do not correspond to eigen-
states of the photon number operators.

Consider the electric field

Ê = − 1

c

∂Â

∂t
(659)

Although the expectation value of Ê vanishes for any eigenstate of the set of
occupation numbers | {nk′,β} >

< {nk′,β} | Ê | {nk′,β} > = 0 (660)

since
< {nk′,β} | ak,α | {nk′,β} > = 0 (661)

the fluctuation in the field is given by

< {nk′,β} | Ê . Ê | {nk′,β} > − | < {nk′,β} | Ê | {nk′,β} > |2

= < {nk′,β} | Ê . Ê | {nk′,β} >

=
4 π

V

∑

k,α

h̄ωk ( nk,α +
1

2
)

→ ∞ (662)

The fluctuations in the field diverge because the zero-point energy fluctuations
diverge.
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The commutation relations between the x-component of the E field and the
B field at the same instant of time are non-zero30. That is,

[ Êx(r) , B̂y(r
′) ] =

2 π

V

∑

k,α

h̄ ωk ǫ̂α(k)x ( k̂ ∧ ǫ̂α(k) )y exp

[
i k . ( r′ − r )

]

− 2 π

V

∑

k,α

h̄ ωk ǫ̂α(k)x ( k̂ ∧ ǫ̂α(k) )y exp

[
− i k . ( r′ − r )

]

= − 4 π h̄ c

V

∑

k

kz exp

[
− i k . ( r′ − r )

]

= i
4 π c h̄

V

∂

∂z

∑

k

exp

[
− i k . ( r′ − r )

]

= i
c h̄

2 π2

∂

∂z
δ3(r′ − r) (663)

The fact that the two polarizations are transverse to the unit vector k̂ has been
used to obtain the third line. Since Ê and B̂ do not commute, it follows that E
and B obey an uncertainty relation in that the values of E and B cannot both
be specified to arbitrary accuracy at the same point.

However, if two points in space time x and x′ are not causally related, i.e.

| r′ − r | 6= c | t′ − t | (664)

then the operators commute

[ Êx(r, t) , B̂y(r
′, t′) ] = 0 (665)

Thus, if the two points in space-time are not connected by the propagation of
light, then the Ex and By fields can both be determined to arbitrary accuracy.

10.4 Coherent States

We shall focus our attention on one normal mode of the electromagnetic field,
and shall drop the indices (k, α) labelling the normal mode. A coherent state
| aϕ > is defined as an eigenstate of the annihilation operator

â | aϕ > = aϕ | aϕ > (666)

For example, the vacuum state or ground state is an eigenstate of the annihila-
tion operator, in which case aϕ = 0.

30P. Jordan and W. Pauli Jr. 47, 151 (1927).
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The coherent state31 can be found as a linear superposition of eigenstates of
the number operator with eigenvalues n

| aϕ > =
∞∑

n=0

Cn | n > (667)

On substituting this form in the definition of the coherent state

â | aϕ > =
∑

n

Cn â | n >

= aϕ
∑

n

Cn | n > (668)

and using the property of the annihilation operator, one has

∑

n

Cn
√
n | n − 1 > = aϕ

∑

n

Cn | n > (669)

On taking the matrix elements of this equation with the state < m |, and using
the orthonormality of the eigenstates of the number operator, one finds

Cm+1

√
m + 1 = aϕ Cm (670)

Hence, on iterating downwards, one finds

Cm =

(
amϕ√
m!

)
C0 (671)

and the coherent state can be expressed as

| aϕ > = C0

∞∑

n=0

(
anϕ√
n!

)
| n > (672)

The normalization constant C0 can be found from

1 = C∗
0 C0

∞∑

n=0

(
anϕ

∗ anϕ
n!

)
(673)

by noting that the sum exponentiates to yield

1 = C∗
0 C0 exp

[
a∗ϕ aϕ

]
(674)

so, on choosing the phase of C0, one has

C0 = exp

[
− 1

2
a∗ϕ aϕ

]
(675)
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Figure 12: The probability of finding n photons P (n) in a normal mode repre-
sented by a coherent state.

From this, it can be shown that if the number of photons in a coherent state
are measured, the result n will occur with a probability given by

P (n) =
( a∗ϕ aϕ )n

n!
exp

[
− a∗ϕ aϕ

]
(676)

Thus, the photon statistics are governed by a Poisson distribution. Furthermore,
the quantity a∗ϕ aϕ is the average number of photons n present in the coherent
state.

The coherent states can be written in a more compact form. Since the state
with occupation number n can be written as

| n > =
( â† )n√

n!
| 0 > (677)

the coherent state can also be expressed as

| aϕ > = exp

[
− 1

2
a∗ϕ aϕ

] ∞∑

n=0

( aϕ â
† )n

n!
| 0 > (678)

or on summing the series as an exponential

| aϕ > = exp

[
− 1

2
a∗ϕ aϕ

]
exp

[
aϕ â

†
]
| 0 > (679)

Thus the coherent state is an infinite linear superposition of states with different
occupation numbers, each coefficient in the linear superposition has a specific
phase relation with every other coefficient.

31R. J. Glauber, Phys. Rev. Lett. 10, 84 (1963).
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The above equation represents a transformation between number operator
states and the coherent states. The inverse transformation can be found by
expressing aϕ as a magnitude a and a phase ϕ

aϕ = a exp

[
i ϕ

]
(680)

The number states can be expressed in terms of the coherent states via the
inverse transformation

| n > =

√
n!

an
exp

[
+

1

2
a2

] ∫ 2π

0

dϕ

2π
exp

[
− i n ϕ

]
| aϕ >

(681)

by integrating over the phase ϕ of the coherent state. Since the set of occupa-
tion number states is complete, the set of coherent states must also span Hilbert
space. In fact, the set of coherent states is over-complete.

The coherent state | aϕ > can be represented by the point aϕ in the Argand
plane. The overlap matrix elements between two coherent states is calculated
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Figure 13: Since a coherent state | aφ > is completely determined by a complex
number aϕ, it can be represented by a point in the complex plane.

as

| < a′ϕ′ | aϕ > |2 = exp

[
− | aϕ − a′ϕ′ |2

]
(682)

Hence, coherent states corresponding to different points are not orthogonal. The
coherent states form an over complete basis set. The over completeness relation
can be expressed as

∫
d ℜe aϕ d ℑm aϕ

π
| aϕ > < aϕ | = Î (683)
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This relation can be proved by taking the matrix elements between the occupa-
tion number states < n′ | and | n >, which leads to

∫
d ℜe aϕ d ℑm aϕ

π
< n′ | aϕ > < aϕ | n > = δn′,n (684)

which can be evaluated as

=

∫
d ℜe aϕ d ℑm aϕ

π
< n′ | aϕ > < aϕ | n >

=

∫ ∞

0

da a

∫ 2π

0

dϕ

π

a∗ϕ
n′

anϕ√
n′! n!

exp

[
− | aϕ |2

]

=

∫ ∞

0

da a
an+n′

√
n′! n!

exp

[
− | aϕ |2

] ∫ 2π

0

dϕ

π
exp

[
i ( n − n′ ) ϕ

]

=

∫ ∞

0

da a
an+n′

√
n′! n!

exp

[
− a2

]
2 δn,n′ (685)

On changing variable to s = a2, one proves the completeness relation by noting
that ∫ ∞

0

ds sn exp

[
− s

]
= n! (686)

Hence, the coherent states form a complete basis set.

The effect of the creation operator on the coherent state can be expressed
as

â† | aϕ > = â† exp

[
− 1

2
a∗ϕ aϕ

]
exp

[
aϕ â

†
]
| 0 >

= exp

[
− 1

2
a∗ϕ aϕ

]
â† exp

[
aϕ â

†
]
| 0 >

= exp

[
− 1

2
a∗ϕ aϕ

]
∂

∂aϕ
exp

[
aϕ â

†
]
| 0 >

= exp

[
− 1

2
a∗ϕ aϕ

]
∂

∂aϕ
exp

[
+

1

2
a∗ϕ aϕ

]
| aϕ >

(687)

The coherent state is not an eigenstate of the creation operator, since the re-
sulting state does not include the zero-photon state.

The expectation value of the field operators between the coherent states
yields the classical value, since

< aϕ | ( â† + â ) | aϕ > = ( a∗ϕ + aϕ ) (688)

In deriving the above equation, the definition

â | aϕ > = aϕ | aϕ > (689)
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has been used in the term involving the annihilation operator and the term orig-
inating from the creation operator is evaluated using the Hermitean conjugate
equation

< aϕ | â† = < aϕ | a∗ϕ (690)

One also finds that that the expectation value of the number operator is given
by

< aϕ | â† â | aϕ > = a∗ϕ aϕ (691)

so the magnitude of aϕ is related to the average number of photons in the
coherent state n. This identification is consistent with the Poisson distribution
of eqn(676) which governs the probability of finding n photons in the coherent
state. The coherent state is not an eigenstate of the number operator since
there are fluctuations in any measurement of the number of photons. The rms
fluctuation ∆n can be evaluated by noting that

< aϕ | n̂2 | aϕ > = < aϕ | â† â â† â | aϕ >

= < aϕ | â† â† â â | aϕ > + < aϕ | â† â | aϕ >

= ( a∗ϕ )2 ( aϕ )2 + a∗ϕ aϕ (692)

where the boson commutation relations have been used in the second line. Thus,
the mean squared fluctuation in the number operator is given by

< aϕ | ∆n̂2 | aϕ > = a∗ϕ aϕ (693)

The rms fluctuation of the photon number is only negligible when compared to
the average value if aϕ has a large magnitude

a∗ϕ aϕ ≫ 1 (694)

The expectation values of coherent states almost behave completely clas-
sically. The deviation from the classical expectation values can be seen by
examining

< aϕ | â â† | aϕ > = a∗ϕ aϕ + 1 (695)

which is evaluated by using the commutation relations. It is seen that the ex-
pectation values can be approximated by the classical values, if the magnitude
of aϕ is much greater than unity.

Exercise:

Determine the expectation values for the electric and magnetic field opera-
tors in a coherent state which represents a plane-polarized electromagnetic wave.

Exercise:

Determine the expectation values for the electric and magnetic field opera-
tors in a coherent state which represents a left circularly-polarized electromag-
netic wave composed of photons with a helicity of +1.
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10.4.1 The Phase-Number Uncertainty Relation

From the discussion of coherent states, it is seen that the coherent state has a
definite phase, but does not have a definite number of quanta. In general, it is
impossible to know both the phase of a state and the number of a state. This
is formalized as a phase - number uncertainty relation.

The phase and amplitude of a state is related to the annihilation operator.
Since the annihilation operator is non-Hermitean, one can construct the annihi-
lation operator as a function of Hermitean operators. Formally, the amplitude
can be related to the square root operator, and the phase to a phase operator32.
Hence, one can write

âk,α = exp

[
+ i (ϕ̂k,α − ωk t)

]
ˆ√
nk,α (696)

and the Hermitean conjugate operator, the creation operator can be expressed
as

â†k,α = ˆ√
nk,α exp

[
− i (ϕ̂k,α − ωk t)

]
(697)

since it has been required that
√̂
n and ϕ̂ are Hermitean. Furthermore, the

operator
√̂
n must have the property

ˆ√
nk,α

ˆ√
nk,α = n̂k,α (698)

On substituting the expressions for the creation and annihilation operators,
in terms of the phase and amplitude, into boson commutation relations

[ âk,α , â
†
k′,β

] = δk,k′ δα,β (699)

etc, one finds

δk,k′ δα,β = exp

[
+ i (ϕ̂k,α − ωk t)

]
ˆ√
nk,α

ˆ√
nk′,β exp

[
− i (ϕ̂k′,β − ωk′ t)

]

− ˆ√
nk′,β exp

[
− i (ϕ̂k′,β − ωk′ t)

]
exp

[
+ i (ϕ̂k,α − ωk t)

]
ˆ√
nk,α

(700)

Thus, for k = k′ and α = β, one has

exp

[
+ i ϕk,α

]
n̂k,α − n̂k,α exp

[
+ i ϕk,α

]
= exp

[
+ i ϕk,α

]
(701)

32P. A. M. Dirac, Proc. Roy. Soc. A 114, 243 (1927).
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This relationship is satisfied, if the phase and number operators satisfy the
commutation relation

[ n̂k,α , ϕk,α ] = i (702)

If one can construct the Hermitean operators that satisfy this commutation
relation, then one can show that the rms uncertainties phase and number must
satisfy the inequality

(∆ϕk,α)rms (∆nk,α)rms ≥ 1 (703)

It should be noted that only the relative phase can be measured33. Thus, if the
phase difference of any two components (k, α) and (k′, α′) is specified precisely,
then the occupation number of either component can not be specified.

Exercise:

Express the vector potential and the electric and magnetic field operators in
terms of the amplitude and phase operators.

10.4.2 Argand Representation of Coherent States

The coherent state | aϕ > can be represented by the point aϕ in the Argand
plane. The overlap matrix elements between two coherent states is calculated
as

| < a′ϕ′ | aϕ > |2 = exp

[
− | aϕ − a′ϕ′ |2

]
(704)

Hence, coherent states are not orthogonal. In fact, their overlap decreases expo-
nentially with large “separations” between the points aϕ and a′ϕ′ in the Argand
plane. We shall denote | aϕ | by a. Two states separated by distances a ∆ϕ or
∆a such that a ∆ϕ ≥ 1 and ∆a ≥ 1 are effectively orthogonal or independent.
However, states within an area given by ∆a×a ∆ϕ ≈ 1 have significant overlap
and so can represent the same state. Therefore, the minimum uncertainty state
occupies an area ∆a × a ∆ϕ ≈ 1. We note that 2 a ∆a can be interpreted
as a measure of the uncertainty ∆nϕ in the particle number for the state, and
∆ϕ is the uncertainty in the phase of the state. Hence, the phase - number
uncertainty relation sets the area of the Argand diagram that can be associated
with a single state as

a ∆a ∆ϕ ∼ 1 (705)

33L. Susskind and J. Glogower, Physics 1, 49 (1964).
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Figure 14: Due to the phase-number uncertainty principle, the minimum area
of the Argand diagram needed to represent a minimum uncertainty state has
dimensions such that a ∆a ∆ϕ ∼ 1.

11 Non-Relativistic Quantum Electrodynamics

The non-relativistic Hamiltonian for a particle with charge q and mass m inter-
acting with a quantized electromagnetic field can be expressed as

Ĥ =
p̂2

2 m
+ q φ(r) − q

2 m c

(
p̂ . Â(r) + Â(r) . p̂

)
+

q2

2 m c2
Â

2
(r)

+

∫
d3r′

(
Ê

2
(r′) + B̂

2
(r′)

8 π

)
(706)

when the vector potential is chosen to satisfy the Coulomb gauge. The second,
third and fourth terms are to be evaluated at the location of the charged point
particle, r, and the last term is evaluated at all points in space. The Hamiltonian
can be expressed as

Ĥ = Ĥ0 + Ĥrad + Ĥint (707)

where Ĥ0 is the Hamiltonian for the charged particle in the electrostatic poten-
tial φ

Ĥ0 =
p̂2

2 m
+ q φ(r) (708)

and Ĥrad is the Hamiltonian for the electromagnetic radiation and Hint is the
interaction

Ĥint = − q

2 m c

(
p̂ . Â + Â . p̂

)
+

q2

2 m c2
Â

2
(709)

The interaction term is composed of a paramagnetic interaction which is linearly
proportional to the vector potential and the diamagnetic interaction which is
proportional to the square of the vector potential. When the electromagnetic
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field is quantized, the radiation Hamiltonian has the form

Ĥrad =
∑

k,α

h̄ ωk
2

(
â†k,α âk,α + âk,α â

†
k,α

)
(710)

Since the quantized vector potential is given by

Â(r, t) =
1√
V

∑

k,α

√
2 π h̄ c2

ωk
êα(k)

(
â†k,α + â−k,α

)
exp

[
− i k . r

]
(711)

the paramagnetic interaction can be expressed as

Ĥpara = − q

m c

∑

k,α

√
2 π h̄ c2

V ωk
p̂ . ǫ̂α(k)

(
â†k,α + â−k,α

)
exp

[
− i k . r

]

(712)
in which the transverse gauge condition ∇ . A = 0 has also been used. The

(k,α)

p

p'

(k,α)

p'
p

Figure 15: The paramagnetic interaction leads to scattering of an electron from
p to p′ by either (a) absorbing a photon, or (b) by emitting a photon.

diamagnetic interaction is expressed as

Ĥdia =
q2

2 m c2

∑

k,k′,α,β

(
2 π h̄ c2

√
ωk ωk′ V

)
ǫ̂β(k

′) . ǫ̂α(k) exp

[
− i ( k + k′ ) . r

]

×
(
â†
k′,β

â†k,α + â†
k′,β

â−k,α + â−k′,β â
†
k,α + â−k′,β â−k,α

)
(713)

For charged particles with spin one-half, analysis of the non-relativistic Pauli
equation shows that there is another interaction term involving the particles’
spins. This interaction can be described by the anomalous Zeeman interaction

ĤZeeman = − q h̄

2 m c

(
σ . B

)
(714)

where
B = ∇ ∧ A(r) (715)
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and σi are the three Pauli matrices.

Generally, the paramagnetic interaction has a greater strength than the Zee-
man interaction. This can be seen by examining the magnitudes of the interac-
tions. The paramagnetic interaction has a magnitude given by

e

m c
p . A (716)

and for an atom of size a , the uncertainty principle yields

p ∼ h̄

a
(717)

The Zeeman interaction has a magnitude given by

e h̄

m c
σ . ( k ∧ A ) (718)

but since k is the wavelength of light

k ∼ 1

λ
(719)

Hence, since the wave length of light is larger than the linear dimension of an
atom, λ > a, one finds the inequality between the magnitude of the paramag-
netic interaction and the Zeeman interaction

e h̄

m c

1

a
A >

e h̄

m c

1

λ
A (720)

Both the paramagnetic and Zeeman coupling strengths are proportional to the
magnitude of the vector potential A, hence the ratio of the strengths of the
interactions are independent of A. Therefore, there magnitudes satisfy the in-
equality

1

a
>

1

λ
(721)

so the Zeeman interaction can frequently be neglected in comparison with the
paramagnetic interaction.

11.1 Emission and Absorption of Photons

An atom in an electromagnetic field has its constituent charges perturbed by
the oscillating field, and those perturbations may lead to either to the absorp-
tion of radiation or emission of further radiation. However, thermal equilibrium
between matter and radiation can only be reached if, in addition to these in-
duced processes, there exists also a spontaneous process in which an excited
atom emits radiation even in the absence of any measurable radiation. This
spontaneous emission process may be considered as being induced by the zero-
point fluctuations of the electromagnetic field.
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11.1.1 The Emission of Radiation

We shall consider a state | (nlm) {nk′,β} > which is an energy eigenstate

of the unperturbed Hamiltonian Ĥ0 and the radiation Hamiltonian Ĥrad. The
interaction Ĥint causes the system to make a transition from the initial state to
a final state. In the initial state, the electron is in an energy state designated
by the quantum numbers (n, l,m) and the electromagnetic field is in a state
specified by the number of photons in each normal mode. That is, the photon
field is in an initial state which is specified by the set of photon quantum num-
bers, {nk′,β′}. We shall consider the transition in which the electron makes a
transition from the initial state to a final state denoted by (n′, l′,m′). Since the

-16
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Figure 16: An electron in the initial atomic state with energy En,l,m makes a
transition to the final atomic state with energy En′,l′,m′ , by emitting a photon
with energy h̄ωk′ .

photon is emitted, the final state of the photon field described by the set {n′k′,β}
where

n′k′,β = nk′,β for (k′, β) 6= (k, α) (722)

and the number of photons in a normal mode (k, α) is increased by one

n′k,α = nk,α + 1 (723)

The transition rate for the electron to make a transition from (n, l,m) to
(n′, l′,m′) can be calculated34 from the Fermi-Golden rule expression
(

1

τ

)
=

(
2 π

h̄

) ∑

k,α

| < n′l′m′ {n′k′,β} | Ĥint | nlm {nk′,β} > |2 δ( Enlm − En′l′m′ − h̄ ωk,α )

(724)

34P. A. M. Dirac, Proc. Roy. Soc. A 112, 661 (1926), A 114, 243 (1927).
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The delta function expresses the conservation of energy. The energy of the
initial state is given by

Enlm +
∑

k′,β

h̄ ωk′,β ( nk′,β +
1

2
) (725)

and the final state has energy

En′l′m′ +
∑

k′,β

h̄ ωk′,β ( n′k′,β +
1

2
) (726)

The difference in the energy of the initial state and final state is evaluated as

Enlm − En′l′m′ − h̄ ωk,α (727)

which is the argument of the delta function and must vanish if energy is con-
served. The sum over k can be evaluated by assuming that the radiation field is
confined to a volume V . The allowed k values for the normal modes are deter-
mined by the boundary conditions. In this case, the sum over k is transformed
to an integral over k-space via

∑

k

→ V

( 2 π )3

∫
d3k (728)

The matrix elements of the interaction Hamiltonian between photon energy
eigenstates is evaluated as

< {n′k′,β} | Ĥint | {nk′,β} > = − q

m c

∑

k,α

√
2 π h̄ c2

V ωk

× < {n′k′,β} | ǫ̂α(k) . p̂ ( â†k,α + â−k,α ) exp

[
− i k . r

]
| {nk′,β} >

(729)

since only the paramagnetic part of the interaction has non-zero matrix ele-
ments. For the photon emission process, the matrix elements of the creation
operator between the initial and final states of the electromagnetic cavity is
evaluated as

< {n′k′,β} | â†k,α | {nk′,β} > =
√

nk,α + 1 (730)

hence, the matrix elements of the interaction are given by

< n′l′m′ {n′k′,β} | Ĥint | nlm {nk′,β} > = − q

m c

√
2 π h̄ c2

V ωk

√
nk,α + 1

× < n′l′m′ | ǫ̂α(k) . p̂ exp

[
− i k . r

]
| nlm >

(731)
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Therefore, the transition rate for photon emission can be expressed as

1

τ
=

2 π

h̄

(
q

m c

)2
V

( 2 π )3

∫
d3k

(
2 π h̄ c2

V ωk

) ∑

α

( nk,α + 1 )

× | < n′l′m′ | ǫ̂α(k) . p̂ exp

[
− i k . r

]
| nlm > |2 δ( Enlm − En′l′m′ − h̄ ωk )

(732)

The above expression shows that the rate for emitting a photon into state (k, α)
is proportional to a factor of nk,α+1, which depends on the state of occupation
of the normal mode. The term proportional to the photon occupation number
describes stimulated emission. However, if there are no photons initially present
in this normal mode, one still has a non-zero transition rate corresponding to
spontaneous emission. These factors are the result of the rigorous calculations35

based on Dirac’s quantization of the electromagnetic field, but were previously
derived by Einstein36 using a different argument. From the above expression, it
is seen that the number of photons emitted into state (k, α) increases in propor-
tional to the number of photons present in that normal mode. This stimulated
emission increases the number of photons and can lead to amplification of the
number of quanta in the normal mode, and leads to the phenomenon of Light
Amplification by Stimulated Emission of Radiation (LASER).

11.1.2 The Dipole Approximation

The dipole approximation is justified by noting that in an emission process, the
typical energy of the photon is of the order of 10 eV. Hence, a typical wave
length of the photon is given by

λ =
2 π c h̄

h̄ ω
∼ 3000 Å (733)

whereas the typical length scale r for the electronic state is of the order of an
Angstrom. Therefore the product k r ∼ 10−3, so the exponential factor in the
vector potential can be Taylor expanded as

exp

[
− i k . r

]
∼ 1 − i k . r + . . . (734)

The first term in the expression produces results that are equivalent to the ra-
diation from an oscillating classical electric dipole. If only the first term in the
expansion is retained, the resulting approximation is known as the dipole ap-
proximation. The second term in the expansion yields results equivalent to the
radiation from an electric quadrupole. The dipole approximation, where only
the first term in the expansion is retained, is justified for transitions where the

35P. A. M. Dirac, Proc. Roy. Soc. A 114, 243 (1927).
36A. Einstein, Verh. Deutsche Phys. Ges. 18, 318 (1916), Phys. Z. 18, 121 (1917).
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V(r)

Ψ(r)

A(r)

Figure 17: A cartoon depicting the relative length-scales assumed in the dipole
approximation.

successive terms in the expansion are successively smaller by factors of the order
of 10−3. The dipole approximation crudely restricts consideration to the case
where the emitted photon can only have zero orbital angular momentum. This
follows from the dipole approximation’s requirement that the size of the atom is
negligible compared with the scale over which the vector potential varies. Then
the vector potential in the spatial region where the electron is located only de-
scribes photons with zero orbital angular momentum.

In the dipole approximation, the transition rate for single photon emission
is given by

1

τ
≈ 2 π

h̄

(
q

m c

)2
V

( 2 π )3

∫
d3k

(
2 π h̄ c2

V ωk

) ∑

α

( nk,α + 1 )

× | ǫ̂α(k) . < n′l′m′ | p̂ | nlm > |2 δ( Enlm − En′l′m′ − h̄ ωk )

(735)

The matrix elements of the momentum can be evaluated by noting that the
states | nlm > are eigenstates of the unperturbed electronic Hamiltonian so

Ĥ0 | nlm > = Enlm | nlm > (736)

where the unperturbed Hamiltonian is given by

Ĥ0 =
p̂2

2 m
+ V (r) (737)

The electronic momentum operator p̂ can be expressed in terms of the commu-

tator of the Hamiltonian Ĥ0 and r through the relation

[ r , Ĥ0 ] = i
h̄

m
p̂ (738)

On using this relation, the matrix elements of the momentum operator can be
written in terms of the matrix elements of the electron’s position operator r by

< n′l′m′ | p̂ | nlm > = − i
m

h̄
< n′l′m′ | [ r , Ĥ0 ] | nlm >
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= i
m

h̄
( Enlm − En′l′m′ ) < n′l′m′ | r | nlm >

(739)

Therefore, in the dipole approximation, the transition rate is given by

1

τ
≈ q2

( 2 π )

∫
d3k ωk

∑

α

( nk,α + 1 )

× | ǫ̂α(k) . < n′l′m′ | r | nlm > |2 δ( Enlm − En′l′m′ − h̄ ωk )

(740)

where the property of the delta function has been used to set

( Enlm − En′l′m′ )2

h̄2 δ( Enlm − En′l′m′ − h̄ ωk ) = ω2
k δ( Enlm − En′l′m′ − h̄ ωk )

(741)
It is seen that the volume of the electromagnetic cavity has dropped out of the
expression of eqn(740) for the transition rate. We shall assume that the number
of photons nk,α in the initial state is zero. The (complex) factor

dnlm,n′l′m′ = q < n′l′m′ | r | nlm > (742)

is defined as the electric dipole moment, and the electronic energy difference is
denoted by the frequency

Enlm − En′l′m′ = h̄ ωnl,n′l′ (743)

With this notation, the transition rate can be expressed as

1

τ
≈ 1

2 π

∫
d3k

(
ω2
nl,n′l′

ωk

) ∑

α

| ǫ̂α(k) . dnlm,n′l′m′ |2 δ( h̄ ωnl,n′l′ − h̄ ωk )

(744)

The integration over d3k can be performed by separating the integration over
the direction dΩk of the outgoing photon and an integration over the magnitude
of k. The integration over the magnitude of k can be performed by noting that
the integrand is proportional to a Dirac delta function, so the transition rate
can be evaluated as

1

τ
=

ω2
nl,n′l′

2 π h̄

∫
dΩk

∫ ∞

0

dk

(
k2

ωk

) ∑

α

| ǫ̂α(k) . dnlm,n′l′m′ |2 δ( ωnl,n′l′ − c k )

=
ω3
nl,n′l′

2 π h̄ c3

∫
dΩk

∑

α

| ǫ̂α(k) . dnlm,n′l′m′ |2 (745)

The above expression yields the rate at which an electron makes a transition
between the initial and final electronic state, in which one photon of any polar-
ization is emitted in any direction.
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If one is only interested in the decay rate of the electronic state via the
emission of a photon, one should sum over all polarizations and integrate over
all directions of the emitted photon. The direction of the emitted photon k̂ is
expressed in terms of polar coordinates defined with respect to an arbitrarily
chosen polar axis. The direction of the photon’s wave vector k̂ is defined as

k

θk

φk

e2(k)

e1(k)

dΩk

x

y

z

Figure 18: A photon is emitted with wave vector k with a direction denoted
by the polar coordinates (θk, ϕk). The polarization vector ê1(k) is chosen to be
in the plane containing the polar-axis and k, therefore, ê2(k) is parallel to the
x− y plane.

k̂ = (sin θk cosϕk, sin θk sinϕk, cos θk). The directions of the two transverse
polarizations α are defined as

ǫ̂1(k) = (cos θk cosϕk, cos θk sinϕk,− sin θk)

ǫ̂2(k) = (− sinϕk, cosϕk, 0) (746)

The scalar product between the polarization vectors and the dipole moment can
be expressed in terms of the Cartesian components via

ǫ̂α(k) . dnlm,n′l′m′ =
∑

i

ǫ̂(i)α (k) . ( d
(i)
nlm,n′l′m′ ) (747)

As neither the polarization nor the direction of the outgoing photon are mea-
sured, the transition rates is determined as an integral over all directions

(
1

τ

)
=

ω3
nl,n′l′

2 π h̄ c3

∑

i,j

∑

α

∫
dΩk ǫ̂

(j)
α (k) ǫ̂(i)α (k) ( d

(j)
nlm,n′l′m′ )∗ ( d

(i)
nlm,n′l′m′ )

(748)
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On using the identity

1

4 π

∑

α

∫
dΩk ǫ̂

(j)
α (k) ǫ̂(i)α (k) =

2

3
δi,j (749)

one finds that the transition rate is given by the scalar product of complex
vectors (

1

τ

)
=

4 ω3
nl,n′l′ d

∗
nlm,n′l′m′ . dnlm,n′l′m′

3 h̄ c3
(750)

The electric dipole matrix elements can be shown to vanish between most pairs
of states. The selection rules determine which matrix elements are non-zero
and, therefore, which electric dipole transitions are allowed.

11.1.3 Electric Dipole Radiation Selection Rules

Electric dipole induced transitions obey the selection rules ∆l = ± 1 and either
∆m = ± 1 or 0, where l is the quantum number for electron’s orbital angular
momentum and m is the z-component. The dipole selection rules can be derived
by writing the wave functions for the one-electron states as

ψn,l,m(r) = Rnl(r) Y
l
m(θ, ϕ) (751)

where Rn,l(r) is the radial wave function, and Y lm(θ, ϕ) is the spherical harmonic
function quantized along the z-direction. The components of an arbitrarily
oriented electric dipole matrix elements involve matrix elements of the quantities

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ (752)

Since the above expressions are the components of a vector, they can be re-
written as combinations of the spherical harmonics with angular momentum
l = 1, via

x = r
1

2

√
8 π

3

(
Y 1
−1(θ, ϕ) − Y 1

1 (θ, ϕ)

)

y = r
i

2

√
8 π

3

(
Y 1
−1(θ, ϕ) + Y 1

1 (θ, ϕ)

)

z = r

√
4 π

3
Y 1

0 (θ, ϕ) (753)

Hence, the components of the vector r can be written as

r =

√
4 π

3
r

[
êx + i êy√

2
Y 1
−1 + êz Y

1
0 − êx − i êy√

2
Y 1

1

]
(754)
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The circular polarization vectors are given by

êm=−1 =
êx − i êy√

2
êm=0 = êz

êm=+1 = − êx + i êy√
2

(755)

which are orthogonal
ê∗m′ . êm = δm,m′ (756)

Hence, the vector r can be written in the alternate forms

r =

√
4 π

3
r
∑

m

ê∗m Y 1
m(θ, ϕ)

=

√
4 π

3
r
∑

m

êm Y 1
m(θ, ϕ)∗ (757)

This illustrates that through the dipole approximation coupling term

r .

(
êm âk,m + ê∗m â†k,m

)
(758)

(where k ≈ 0), an electron with angular momentum quantized along the z-
direction most naturally couples to circularly-polarized light with the same
quantization axis. The electric dipole matrix elements involve the three fac-
tors

∫ 2π

0

dϕ

∫ π

0

dθ sin θ Y l
′

m′(θ, ϕ)∗ Y 1
±1(θ, ϕ) Y lm(θ, ϕ)

∫ 2π

0

dϕ

∫ π

0

dθ sin θ Y l
′

m′(θ, ϕ)∗ Y 1
0 (θ, ϕ) Y lm(θ, ϕ) (759)

which come from the angular integrations. Conservation of angular momentum
leads to the dipole-transition selection rules

l′ = l ± 1 (760)

and

m′ = m ± 1

m′ = m (761)

because one unit of angular momentum is carried away by the photon in the
form of its spin37.

37In the dipole approximation, the photon is restricted to have zero orbital angular mo-
mentum. Therefore, the angular momentum is completely transformed to the photon’s spin.
More generally, the spatial (plane-wave) part of the vector potential should be expanded in
terms of spherical harmonics to exhibit the photon’s orbital angular momentum components.
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The m-selection rules for electric dipole transitions.

The selection rules on the z-component of the angular momentum, m, follow
directly from the ϕ-dependence of the spherical harmonics

Y lm(θ, ϕ) = Θl
m(θ)

1√
2 π

exp

[
i m ϕ

]
(762)

so, the integral over the Cartesian components of the dipole matrix elements
involve

1

2 π

∫ 2π

0

dϕ exp

[
i (m−m′ ) ϕ

] {
sinϕ
cosϕ

}
=

1

2

{
− i δm+1,m′ + i δm−1,m′

δm+1,m′ + δm−1,m′

}

(763)
and

1

2 π

∫ 2π

0

dϕ exp

[
i ( m − m′ ) ϕ

]
= δm,m′ (764)

The above results lead to the selection rules for the z-component of the electron’s
orbital angular momentum

m′ = m ± 1

m′ = m (765)

An alternate derivation of the selection rules for the z-component of the
electron’s orbital angular momentum can be found from considerations of the
commutation relations

[ L̂z , x ] = i h̄ y

[ L̂z , y ] = − i h̄ x

[ L̂z , z ] = 0 (766)

On taking the matrix elements between states with definite z-components of the
angular momenta, one finds

< n′l′m′ | [ L̂z , x ] | nlm > = i h̄ < n′l′m′ | y | nlm >

< n′l′m′ | [ L̂z , y ] | nlm > = − i h̄ < n′l′m′ | x | nlm >

< n′l′m′ | [ L̂z , z ] | nlm > = 0 (767)

which reduce to

( m′ − m ) < n′l′m′ | x | nlm > = i < n′l′m′ | y | nlm >

( m′ − m ) < n′l′m′ | y | nlm > = − i < n′l′m′ | x | nlm >

( m′ − m ) < n′l′m′ | z | nlm > = 0 (768)
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From the last equation, it follows that either m′ = m or that

< n′l′m′ | z | nlm > = 0 (769)

On combining the first two equations, one finds that

( m′ − m )2 < n′l′m′ | x | nlm > = i ( m′ − m ) < n′l′m′ | y | nlm >

= < n′l′m′ | x | nlm > (770)

The above equation is solved by requiring that either

( m′ − m )2 = 1 (771)

or
< n′l′m′ | x | nlm > = 0 (772)

Hence, them-selection rules for the electric dipole transitions are ∆m = ± 1, 0.

The l-selection rules for electric dipole transitions.

The selection rules for the magnitude of the electron’s orbital angular mo-
mentum can be found by considering the double commutator

[ L̂2 , [ L̂2 , r ] ] = 2 h̄2

(
r L̂2 + L̂2 r

)
(773)

On taking the matrix elements of this equation between different eigenstates of
the magnitude of the orbital angular momentum, one finds

(
l′ ( l′ + 1 ) − l ( l + 1 )

)2

< n′l′m′ | r | nlm >= 2

(
l′ ( l′ + 1 ) + l ( l + 1 )

)
< n′l′m′ | r | nlm >

(774)
Since

(
l′ ( l′ + 1 ) − l ( l + 1 )

)2

= ( l′ + l + 1 )2 ( l′ − l )2 (775)

and

2

(
l′ ( l′ + 1 ) + l ( l + 1 )

)
=

(
( l′ + l + 1 )2 + ( l′ − l )2 − 1

)
(776)

the above equation is satisfied if, either

< n′l′m′ | r | nlm > = 0 (777)

or (
( l′ + l + 1 )2 − 1

) (
( l′ − l )2 − 1

)
= 0 (778)
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The first factor in eqn(778) is always positive when l′ 6= l, therefore, the electric
dipole selection rule becomes ∆l = ± 1.

The actual values of the matrix elements can be found from explicit calcu-
lations. The θ-dependence of the matrix elements is governed by the associated
Legendre functions through

Θl
m(θ) =

√
( 2 l + 1 )

2

( l − m )!

( l + m )!
P lm(cos θ) (779)

which obey the recursion relations

sin θ P lm−1(cos θ) =
P l+1
m (cos θ) − P l−1

m (cos θ)

2 l + 1
(780)

and

sin θ P lm+1(cos θ) =
( l + m ) ( l + m + 1 ) P l−1

m (cos θ) − ( l − m ) ( l − m + 1 ) P l+1
m (cos θ)

2 l + 1
(781)

appropriate for the ∆m = ± 1 transitions and

cos θ P lm(cos θ) =
( l − m + 1 ) P l+1

m (cos θ) + ( l + m ) P l−1
m (cos θ)

2 l + 1
(782)

for the constant m transition, ∆m = 0. Using the recursion relations, one
finds that

sin θ Θl
m(θ) =

√
( l + m + 2 ) ( l + m + 1 )

( 2 l + 1 ) ( 2 l + 3 )
Θl+1
m+1

−
√

( l − m ) ( l − m − 1 )

( 2 l − 1 ) ( 2 l + 1 )
Θl−1
m+1

(783)

for ∆m = 1, while for ∆m = − 1 one finds

sin θ Θl
m(θ) =

√
( l + m ) ( l + m − 1 )

( 2 l + 1 ) ( 2 l − 1 )
Θl−1
m−1

−
√

( l + 2 − m ) ( l + 1 − m )

( 2 l + 1 ) ( 2 l + 3 )
Θl+1
m−1

(784)

and for constant m

cos θ Θl
m(θ) =

√
( l + 1 + m ) ( l + 1 − m )

( 2 l + 1 ) ( 2 l + 3 )
Θl+1
m

+

√
( l + m ) ( l − m )

( 2 l − 1 ) ( 2 l + 1 )
Θl−1
m (785)
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The coefficients in the above equation have a similar form to the Clebsch-Gordon
coefficients. The dipole matrix elements can be evaluated by taking the matrix
elements of the above set of relations with Θl′

m′(θ)∗ and then using the orthog-
onality properties. The above three relations give rise to the selection rules for
the magnitude of the orbital angular momentum l

l′ = l ± 1 (786)

Hence, not only have the selection rules on l been re-derived but the angular
integrations have also been evaluated.

What the above mathematics describes is how the spin angular momentum
of the emitted photon is combined with the orbital angular momentum of the
electron in the final state, so that total angular momentum is conserved. This
implies the selection rules which leads to the magnitude of the initial and final
electronic angular momentum l having to satisfy the triangular inequality

l′ + 1 ≥ l ≥ | l′ − 1 | (787)

as required by the rules of combination of angular momentum. The evaluation of
the dipole matrix elements is an explicit example of the Wigner-Eckart theorem.
For this example, the irreducible tensor is the vector V with components V µ

given by

V ± = ∓ ( x ± i y )√
2

= r

√
4π

3
Y 1
±1

V 0 = z = r

√
4π

3
Y 1

0 (788)

Then, since the electric dipole carries angular momentum (1, µ), the Wigner-
Eckart theorem reduces to

< n′l′m′ | V µ | nlm > =
1√

2 l′ + 1
< l,m; 1, µ | l′m′ > < n′l′ | |V | | nl >

(789)
where the first term which represents the angular integration is a Clebsch-
Gordon coefficient and the second factor is the reduced matrix element which
does depend on the form of the particular vector, but is independent of any
choice of coordinate system. Furthermore, the Wigner-Eckart theorem yields
the selection rules for the electric dipole transition

l + l′ ≥ 1 ≥ | l − l′ | (790)

Exercise:
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Table 1: Matrix Elements of the Components of the Dipole Moment

l′ m′ x y z

m′ = m+ 1 1
2

√
(l+2+m)(l+1+m)

(2l+1)(2l+3) − i
2

√
(l+2+m)(l+1+m)

(2l+1)(2l+3) -

l′ = l + 1 m′ = m - -
√

(l+1+m)(l+1−m)
(2l+1)(2l+3)

m′ = m− 1 − 1
2

√
(l+2−m)(l+1−m)

(2l+1)(2l+3) − i
2

√
(l+2−m)(l+1−m)

(2l+1)(2l+3) -

m′ = m+ 1 − 1
2

√
(l−m)(l−1−m)
(2l−1)(2l+1)

i
2

√
(l−m)(l−1−m)
(2l−1)(2l+1) -

l′ = l − 1 m′ = m - -
√

(l+m)(l−m)
(2l−1)(2l+1)

m′ = m− 1 1
2

√
(l+m)(l−1+m)
(2l−1)(2l+1)

i
2

√
(l+m)(l−1+m)
(2l−1)(2l+1) -

Using the commutation relations for the j-th component of a vector V̂ j with
the i-th component of the orbital angular momentum L̂i,

[ L̂i , V̂ j ] = i h̄
∑

k

ξi,j.k V̂ k (791)

where ξi,j,k is the antisymmetric Levi-Civita symbol, show that

[ L̂2 , V̂ ] = − i h̄

(
L̂ ∧ V̂ − V̂ ∧ L̂

)

= − 2 i h̄

(
L̂ ∧ V̂ − i h̄ V̂

)
(792)

From the above equation, derive the double commutation relation

[ L̂2 , [ L̂2 , V̂ ] ] = 2 h̄2

(
V̂ L̂2 + L̂2 V̂

)
− 4 h̄2 L̂

(
L̂ . V̂

)

(793)

and that the last term of the above expression is zero if V̂ = r.

The parity selection rule.

In addition to the electronic orbital angular momentum selection rules, there
is a parity selection rule. The parity operation is an inversion through the origin
given by r → − r. The parity operator P̂ has the effect

P̂ ψ(r) = ψ(−r) (794)
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The parity operator is its own inverse since for any state ψ(r)

P̂2 ψ(r) = P̂ ψ(−r)
= ψ(r) (795)

Therefore, the parity operator has eigenvalues p = ±1 for the eigenstates which
are defined by

P̂ φp(r) = p φp(r) (796)

so
P̂2 φp(r) = p2 φp(r) = φp(r) (797)

which yields p2 = 1 or p = ± 1. In polar coordinates, the parity operation is
equivalent to a reflection

θ → π − θ (798)

followed by a rotation
ϕ → ϕ + π (799)

In electromagnetic processes, parity is conserved since the Coulomb potential is

θ

ϕ
x

y

z r

- r

π−θ
π+ϕ

r

r

Figure 19: The effect of the parity operator on a displacement vector r, in
spherical polar coordinates.

symmetric under reflection38. Therefore, the parity operator P̂ commutes with
the Hamiltonian

[ P̂ , Ĥ ] = 0 (800)

and so one can find states | φn > that are simultaneous eigenstates of Ĥ and
P̂.

Ĥ | φn > = En | φn >

P̂ | φn > = pn | φn > (801)

38The weak interaction does not conserve parity.
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Inversion transforms vector operators according to

P̂ r P̂−1 = − r (802)

Hence, for any matrix elements of r between any eigenstates of the parity oper-
ator, one has

< φn′ | r | φn > = − < φn′ | P̂ r P̂−1 | φn >

= − pn′ pn < φn′ | r | φn > (803)

Therefore, the parity must change in an electric dipole transition

pn′ pn = − 1 (804)

This is known as the Laporte selection rule for electric dipole transitions39. The
validity of this selection follows from the fact that inversion commutes with the
orbital angular momentum operator. The spherical harmonics are eigenstates
of the parity operator since

P̂ Y lm(θ, ϕ) = ( − 1 )l Y lm(θ, ϕ) (805)

This is proved by examining

Y ll (θ, ϕ) ∝ sinl θ exp

[
i l ϕ

]
(806)

which is seen to be an eigenfunction of the parity operator with eigenvalue
( − 1 )l. All other spherical harmonics with the same value of l have the
same eigenvalue since the lowering operator (like any component of the angular
momentum) commutes with the parity operator. Therefore, one can use the
angular momentum selection rule to show that parity does change in an electric
dipole transition since

( − 1 )l+l
′

= − 1 (807)

The Laporte selection rule is satisfied since ∆l = 1.

11.1.4 Angular Distribution of Dipole Radiation

We shall assume that the initial state is polarized so that the electron is in an
electronic state labelled by m, where the axis of quantization is fixed in space.
The decay rate in which a photon of polarization α is emitted into the solid
angle dΩk is given by

1

τdΩk

=
ω3
nl,n′l′

2 π h̄ c3
dΩk

∑

α

| ǫ̂α(k) . dnlm,n′l′m′ |2 (808)

39O. Laporte, Z. Physik, 23, 135 (1924).
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For a photon emitted in the direction k̂

k̂ = (sin θk cosϕk, sin θk sinϕk, cos θk) (809)

the polar polarization vectors are given by

ǫ̂1(k) = (cos θk cosϕk, cos θk sinϕk,− sin θk)

ǫ̂2(k) = (− sinϕk, cosϕk, 0) (810)

Therefore, the scalar products of the transition matrix elements of r with the
polarizations are given by

ǫ̂1(k) . < n′l′m′ | r | nlm > =
1

2
cos θk exp[ − i ϕk ] < n′l′m′ | (x+ iy) | nlm >

+
1

2
cos θk exp[ + i ϕk ] < n′l′m′ | (x− iy) | nlm >

− sin θk < n′l′m′ | z | nlm > (811)

and

ǫ̂2(k) . < n′l′m′ | r | nlm > = − i

2
exp[ − i ϕk ] < n′l′m′ | (x+ iy) | nlm >

+
i

2
exp[ + i ϕk ] < n′l′m′ | (x− iy) | nlm >

(812)

Due to the m-selection rules

< n′l′m′ | (x+ iy) | nlm > ∝ δm′−m−1

< n′l′m′ | (x− iy) | nlm > ∝ δm′−m+1 (813)

and
< n′l′m′ | z | nlm > ∝ δm′−m (814)

the cross-terms in the square of the matrix elements are zero. Hence, on sum-
ming over the polarizations, one finds that the (θk, ϕk) dependence of the decay
is governed by the dipole matrix elements through

∑

α

| ǫ̂α(k) . rnlm,n′l′m′ |2 =
1

4

(
1 + cos2 θk

)
| < n′l′m′ | (x+ iy) | nlm > |2

+
1

4

(
1 + cos2 θk

)
| < n′l′m′ | (x− iy) | nlm > |2

+ sin2 θk | < n′l′m′ | z | nlm > |2 (815)

For l′ = l + 1, the above sum is found to depend on the angular factors

Im
′

l′=l+1(θk, ϕk) =

(
1 + cos2 θk

)
1

4

(l + 2 +m)(l + 1 +m)

(2l + 1)(2l + 3)
δm′−m−1

+

(
1 + cos2 θk

)
1

4

(l + 2 −m)(l + 1 −m)

(2l + 1)(2l + 3)
δm′−m+1

+ sin2 θk
(l + 1 +m)(l + 1 −m)

(2l + 1)(2l + 3)
δm′−m (816)
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Since the z-component of the final electron’s orbital angular momentum is not
measured, m′ should be summed over. The angular distribution of the emitted
radiation for the l′ = l+1 transition when neither the polarization nor the final
state m′ value are measured is given by

∑

m′

Im
′

l′=l+1(θk, ϕk) =
1

2
( 1 + cos2 θk )

(l + 2)(l + 1) + m2

(2l + 1)(2l + 3)
+ sin2 θk

(l + 1)2 − m2

(2l + 1)(2l + 3)

(817)
This factor determines the angular dependence of the emitted electromagnetic
radiation, which clearly depends on the value of m specifying the initial elec-
tronic state. On rearranging the expression, one finds that the anisotropy is
governed by the factor

∑

m′

Im
′

l′=l+1(θk, ϕk) =
(l + 2)(l + 1) + m2

(2l + 1)(2l + 3)
+

1

2

l(l + 1) − 3 m2

(2l + 1)(2l + 3)
sin2 θk

(818)
which shows that form = 0 the photons are preferentially emitted perpendicular
to the direction of quantization axis since this maximizes the overlap between
the polarization and the dipole matrix element. In the opposite case of large
values of m2 [ 3 m2 > l (l + 1) ], one finds that the photons are preferentially
emitted parallel (or anti-parallel) to the axis of quantization. On integrating
over all directions of the emitted photon, one obtains

1

4 π

∫
dΩk

∑

m′

Im
′

l′=l+1(θk, ϕk) =
2

3

(l + 1)

(2l + 1)
(819)

The independence of the result on m follows since, in this case, there are no an-
gular correlations and the choice of direction of quantization of m is completely
arbitrary. The total decay rate for an electron in a state with fixed m due to
an l′ = l + 1 transition is given by

1

τl′=l+1
=

4 e2 ω3
nl,n′l′

3 h̄ c3
(l + 1)

(2l + 1)

∣∣∣∣
∫ ∞

0

dr r2 R∗
n′l+1(r) r Rnl(r)

∣∣∣∣
2

(820)

for l′ = l + 1. This decay rate would be measured in experiments in which
neither the final state of the electron nor the final photon state is measured.

However, if the initial electronic state is unpolarized, then one should sta-
tistically average over the initial m. In this case, the emitted radiation becomes
isotropic

1

2l + 1

l∑

m=−l

∑

m′

Im
′

l′=l+1(θk, ϕk) =
2

3

(l + 1)

(2l + 1)
(821)

since

1

2l + 1

l∑

m=−l
m2 =

1

3
l(l + 1) (822)
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Hence, if the initial electronic state is unpolarized, the electromagnetic radiation
is isotropic. The decay rate for the l′ = l+1 transition starting with a statistical
distribution of m values is given by

1

τl′=l+1
=

4 e2 ω3
nl,n′l′

3 h̄ c3
(l + 1)

(2l + 1)

∣∣∣∣
∫ ∞

0

dr r2 R∗
n′l+1(r) r Rnl(r)

∣∣∣∣
2

(823)

for l′ = l+1. This is the same result that was previously obtained for the decay
rate of a level with a specific m value, when the m′ value of the final state and
the polarization or direction of the emitted photon are not measured.

For the case where l′ = l − 1, one finds that the decay rate involves the
angular factor

Im
′

l′=l−1(θk, ϕk) =

(
1 + cos2 θk

)
1

4

(l −m)(l − 1 −m)

(2l − 1)(2l + 1)
δm′−m−1

+

(
1 + cos2 θk

)
1

4

(l − 1 +m)(l +m)

(2l − 1)(2l + 1)
δm′−m+1

+ sin2 θk
(l +m)(l −m)

(2l − 1)(2l + 1)
δm′−m (824)

which on summing over the final values of m′ yields the angular dependence of
the radiation field

∑

m′

Im
′

l′=l−1(θk, ϕk) =
1

2
( 1 + cos2 θk )

l(l − 1) + m2

(2l − 1)(2l + 1)
+ sin2 θk

l2 −m2

(2l − 1)(2l + 1)

(825)
The anisotropy of the emitted radiation is determined by the factor

∑

m′

Im
′

l′=l−1(θk, ϕk) =
l(l − 1) + m2

(2l − 1)(2l + 1)
+

1

2

l(l + 1) − 3 m2

(2l − 1)(2l + 1)
sin2 θk (826)

which shows that form = 0 the photons are preferentially emitted perpendicular
to the direction of quantization axis since this maximizes the overlap between
the polarization and the dipole matrix element. In the opposite case of larger
m2 [ 3 m2 > l (l + 1) ], one finds that the photons are preferentially emitted
parallel (or anti-parallel) to the axis of quantization.

Again it is noted that if the initial state is unpolarized, so that m has to be
averaged over, then the radiation field is isotropic since

1

2l + 1

l∑

m=−l

∑

m′

Im
′

l′=l−1(θk, ϕk) =
2

3

l

(2l + 1)
(827)

Therefore, the decay rate in which the photon is emitted in any direction is
given by the expression

1

τl′=l−1
=

4 e2 ω3
nl,n′l′

3 h̄ c3
l

(2l + 1)

∣∣∣∣
∫ ∞

0

dr r2 R∗
n′l−1(r) r Rnl(r)

∣∣∣∣
2

(828)
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for l′ = l − 1.

Classical Interpretation.

The quantum mechanical results for the angular distribution of the radiation
can be understood in terms of a simple classical model of the atom. In Bohr’s
model, a single electron orbits a central nucleus to which it is bound by the
attractive Coulomb potential. We shall assume that the radius of the orbit is a
and that the electron is performing a circular orbit in the x−y plane. Since the
direction of the electron’s orbital angular momentum is aligned with the z-axis,
it corresponds to the case where m ≈ l and l ≫ 1. In this case, the electron
has an oscillating dipole moment given by

d(t) = q a

(
cosω t êx + sinω t êy

)

= q a ℜe
(
êx − i êy

)
exp

[
i ω t

]
(829)

This rotating dipole moment can be decomposed into two orthogonal linear
dipole moments which oscillate out of phase with each other. It should be

ω td(t)

e
-

x

y

m = l

Figure 20: A classical electron orbiting in the x-y plane (m = l) can be consid-
ered as producing two perpendicular linearly-oscillating electric-dipole moments.

recalled that a classical oscillating (linear) electric dipole moment radiates power
P (ω) into a solid angle dΩk with a distribution given by

(
dP

dΩk

)

linear
=

c

8 π

(
ω

c

)4

| d |2 sin2 Θkd (830)

where Θkd is the angle between the detector and the direction of the electric
dipole. On considering the radiation from the atom to be generated from two
orthogonal linear oscillating dipoles, one finds

(
dP

dΩk

)

dipole
=

c

8 π

(
ω

c

)4

| d |2
(

sin2 Θkx + sin2 Θky

)
(831)
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ez k

Θkx

θk
Θky

dΩk

e-  m=l

Figure 21: The polarization of the radiated electromagnetic field for an electron
orbiting in the x-y plane (m = l) can be comprehended in terms of the classical
radiation emanating from two linearly oscillating electric-dipole moments. The
angles Θkx and Θky, respectively, are the angles between the emitted radiation
and the x-axis and the angle subtended by the emitted radiation and the y-axis.

which on using

cos Θkx = sin θk cosϕk

cos Θky = sin θk sinϕk (832)

becomes

(
dP

dΩk

)

dipole
=

c

8 π

(
ω

c

)4

| d |2
(

1 + cos2 θk

)
(833)

Since the energy of the emitted photon is given by h̄ ω, one finds the angular
dependence of the semi-classical prediction of the decay rate is given by

1

τdΩk

=
e2

8 π h̄ a

(
ω a

c

)3 (
1 + cos2 θk

)
dΩk (834)

The polarization vector is parallel to the direction of the electric field, which in
turn is given by the direction of the oscillating dipole that produced it. Hence,
a detector which is arranged to accept radiation travelling in the direction k̂ will
detect polarizations that are found by projecting the electron’s orbit onto the
plane perpendicular to k̂. For example, in this case where the electron’s orbit
is in the x − y plane, so radiation along the z-axis will be circularly-polarized,
whereas radiation in the x− y plane will be linearly-polarized.
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Linear

Circular

e-

k

k

Figure 22: The polarization at a field point can be determined by considering
the projection of the electrons orbit on a plane perpendicular to the direction
of emission k. The polarization vector of the classical EM wave follows the
projected orbit of the dipole moment.

The angular dependence of the decay rate follows directly from the expres-
sions of eqn(817) and eqn(825) by settingm ≈ l ≫ 1, replacing the radial matrix
elements of r by a, adding the expressions and inserting them into eqn(808). The
analysis shows that quantum mechanics reproduces the classical limit correctly,
as is expected from the correspondence principle.

11.1.5 The Decay Rate from Dipole Transitions.

The decay rate due to dipole transitions includes processes in which photons
of all polarizations are emitted in all directions. Accordingly, the decay rate
is found by summing over all polarizations and integrating over the directions
of the emitted photon. For a spherically symmetric system, the energy will
be independent of the z-component of the orbital angular momentum. In this
case, one should sum over all values of m′ corresponding to the degenerate final
states. On summing over all final states corresponding to a specific l′ value, that
is on summing over m′ where m′ = m, m ± 1, one finds that the transition
rate can be expressed as

(
1

τ

)
=

4 e2 ω3
nl,n′l′

3 h̄ c3

{ (l+1)
(2l+1)
l

(2l+1)

} ∣∣∣∣
∫ ∞

0

dr r2 Rn′l′(r) r Rnl(r)

∣∣∣∣
2

(835)

for

l′ =

{
l + 1
l − 1

(836)

It should be noted that, for a fixed l′, the lifetime of the state | nlm > is inde-
pendent of the value of m. This is expected since the choice of the quantization
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Table 2: Radial wave functions Rnl(ρ) for a Hydrogenic-like atom, where ρ =
Zr
a

. The functions are normalized so that
∫∞
0

dρ ρ2 Rnl Rnl = 1.

n = 1 l = 0 2 exp

[
− ρ

]

n = 2 l = 0 1√
2

(
1 − ρ

2

)
exp

[
− ρ

2

]

l = 1 1
2

√
6
ρ exp

[
− ρ

2

]

n = 3 l = 0 2

3
3
2

(
1 − 2

3 ρ + 2
27 ρ

2

)
exp

[
− ρ

3

]

l = 1 2
5
2

3
7
2

(
1 − ρ

6

)
ρ exp

[
− ρ

3

]

l = 2 2
3
2

3
9
2

√
5
ρ2 exp

[
− ρ

3

]
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Table 3: Values of |
∫∞
0

dr r2 Rnl r Rn′l−1 |2 in atomic units.

n, l n′, l − 1

np 1s 28n7(n− 1)2n−5(n+ 1)−2n−5

2s 217n7(n2 − 1)(n− 2)2n−6(n+ 2)−2n−6

3s 2837n7(n2 − 1)(n− 3)2n−8(7n2 − 27)2(n+ 3)−2n−8

nd 2p 2193−1n9(n2 − 1)(n− 2)2n−7(n+ 2)−2n−7

3p 21139n9(n2 − 1)(n2 − 4)(n− 3)2n−8(n+ 3)−2n−8

nf 3d 213395−1n11(n2 − 1)(n2 − 4)(n− 3)2n−9(n+ 3)−2n−9

direction is completely arbitrary.

There are no selection rules associated with the radial integration in the
dipole matrix elements ∫ ∞

0

dr r2 Rn′l−1 r Rnl (837)

The radial part of the dipole matrix element can be expressed in terms of the
hypergeometric function F (a, b, c) via

∫ ∞

0

dr r2 Rn′l−1 r Rnl

=
a (−1)n

′−l

4(2l − 1)

√
(n+ l)!(n′ + l − 1)!

(n− l − 1)!(n′ − l)!

[
(4n′n)l+1(n− n′)n

′+n−2l−2

(n′ + n)n′+n

]

×
[
F (l + 1 − n, l − n′, 2l,− 4n′n

(n′ − n)2
) −

(
n′ − n

n′ + n

)2

F (l + 1 − n, l − n′,− 4n′n

(n′ − n)2
)

]

(838)

Simple analytic expressions for the squares of the matrix elements for small val-
ues of (n′, l) are shown in Table(3).

The radial integrations were evaluated by Schrödinger40 using the generating

40E. Schrödinger, Ann. der Phys. 79, 362 (1926).
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function expansion for the Laguerre polynomials. Eckart41 and Gordon42 have
calculated these dipole matrix elements by other means. In general, the lifetime
of the hydrogenic states increases with increasing n, varying roughly as n3 for
a fixed value of l. The decrease in the dipole matrix elements with increasing n
is simply due to the increasing numbers of nodes in the radial wave functions.

The magnitude of the decay rate is estimated as

1

τ
∼ c

a

(
ω a

c

)3 (
e2

h̄ c

)
(839)

where the magnitude of the dipole matrix element is estimated as e a where a
is the Bohr radius. On setting h̄ω equal to the electrostatic energy of hydrogen,
the remaining factor is estimated to have the magnitude

(
ω a

c

)
∼
(
e2

h̄ c

)
(840)

where the length scale a has dropped out. Hence, as

(
e2

h̄ c

)
≈ 1

137.0359979
(841)

one finds that the decay rate is given by

1

τ
∼ c

a

(
e2

h̄ c

)4

(842)

so the decay time is approximately eight orders of magnitude larger than the
time taken for the photon to cross the atom. When averaged over l, the electric
dipole decay rate is given by

1

τ n
∝
∑

l

(2l + 1)

n5
∼ n−

9
2 (843)

so, as seen in Table(4), the decay is slower for the higher energy levels.

11.1.6 The 2p→ 1s Electric Dipole Transition Rate.

Consider the decay of the 2p state (with m = 0) to the 1s state in the hydrogen
atom. As can be seen from Table(2), the initial state is described by an electronic
wave function

ψ2p(r) =
1

2
√

6 a3

(
r

a

)
exp

[
− 1

2

r

a

] √
3

4 π
cos θ (844)

41C. Eckart, Phys. Rev. 28, 927 (1926).
42W. Gordon, Ann. der Phys. 2, 1031 (1929).

141



Table 4: Electric Dipole Transition Rates for Hydrogen, in units of 108sec−1.

Initial Final n=1 n=2 n=3

2p ns 6.25 - -

3s np - 0.063 -
3p ns 1.64 0.22 -
3d np - 0.64 -

4s np - 0.025 0.018
4p ns 0.68 0.095 0.030
4p nd - - 0.003
4d np - 0.204 0.070
4f nd - - 0.137

and the final state electronic is given by

ψ1s(r) =
2√
a3

exp

[
− r

a

]
1√
4 π

(845)

where the length scale a is the Bohr radius

a =
h̄2

m e2
(846)

The decay rate in the Fermi-Golden rule, evaluated in the dipole approximation,
is given by

1

τ
=

4 ω3
1,2 d

∗
1s,2p . d1s,2p

3 h̄ c3
(847)

The frequency is evaluated from

h̄ ω12 = E2p − E1s

=
m e4

2 h̄2

(
1 − 1

4

)

=
3

8

e2

a
(848)

Hence,

1

τ
=

4

3

(
3

8

)3 (
e2

h̄ a

)3
e2 a2

h̄ c3

∣∣∣∣
d1s,2p

e a

∣∣∣∣
2
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=
9

128

(
e2

h̄ c

)4
c

a

∣∣∣∣
d1s,2p

e a

∣∣∣∣
2

(849)

Therefore, the scattering rate is determined by the ratio c
a

but also is modified
by the fourth power of the dimensionless electromagnetic coupling strength

(
e2

h̄ c

)
≈ 1

137.0359979
(850)

The smallness of this factor allows us to only consider the Fermi-Golden rule
expression for the decay rate. The dimensionless dipole matrix elements are
expected to be non-zero, since they obey the selection rules. They are non-zero,
as can be directly verified by performing an integration. The only non-zero
dipole matrix element originates from the z-component of the dipole

d1s,2p = e

∫
d3r ψ∗

1s(r) r ψ2p(r) (851)

since only the z-component satisfies the ∆m = 0 selection rule. The angular
integration is evaluated as

√
3

4 π

∫ 2π

0

dϕ

∫ π

0

dθ sin θ cos2 θ =

√
3

4 π
2 π

2

3

=
1√
3

(852)

and the radial integration yields

∫ ∞

0

dr r2 R∗
1s(r) r R2p(r) =

2

2
√

6

∫ ∞

0

dr
r4

a3
exp

[
− 3

2

r

a

]

=
a√
6

(
2

3

)5 ∫ ∞

0

dx x4 exp

[
− x

]

= a
4!√
6

(
2

3

)5

= 4 a
√

6

(
2

3

)5

(853)

Hence, the magnitude of the dipole matrix element is evaluated as

d1s,2p

e a
= 4

√
2

(
2

3

)5

(854)

Therefore, the dipole allowed decay rate is given by

1

τ
=

(
2

3

)8 (
e2

h̄ c

)4
c

a
(855)

Hence, the time scale τ is of the order of 10−10 seconds. The exact value of the
decay time is calculated to be 1.6 × 10−9 seconds.
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11.1.7 Electric Quadrupole and Magnetic Dipole Transitions.

Consider decays such as the 3d state (withm = 0) to the 1s state in the hydrogen
atom. Since, in this transition, the change in the electron’s angular momentum
is two units, the transition is forbidden in the dipole approximation. Therefore,
the transition rate is evaluated by keeping the next order term in the expansion

exp

[
− i k . r

]
≈ 1 − i k . r + . . . (856)

The second term in the expansion describes electric quadrupole and magnetic
dipole transitions.

The matrix elements that have to be evaluated are of the form

< n′l′m′ | ( k . r ) ( ǫ̂α(k) . p̂ ) | nlm > (857)

This shall be written as the sum of two terms, with different symmetries with re-
spect to interchange of r and p. These two terms will describe electric quadrupole
and magnetic dipole transitions. The matrix elements are written as the sum
of a term symmetric under the interchange of r and p̂ and a term that is anti-
symmetric

( k . r ) ( ǫ̂α(k) . p̂ ) =
1

2

(
( k . r ) ( ǫ̂α(k) . p̂ ) + ( k . p̂ ) ( ǫ̂α(k) . r )

)

+
1

2

(
( k . r ) ( ǫ̂α(k) . p̂ ) − ( k . p̂ ) ( ǫ̂α(k) . r )

)

(858)

The first term represents the matrix elements for the electric quadrupole tran-
sitions43, and the second term represents the matrix elements for the magnetic
dipole transitions. The first term can be written as the scalar products of a
symmetric dyadic

k .

(
r p̂ + p̂ r

)
. ǫ̂α(k) (859)

The scalar products are organized such that the left most vector outside the
parenthesis forms a scalar product with the left most vectors within the paren-
thesis, and likewise with the right most vectors. The electronic matrix elements
only involve the dyadic operator, as the wave vector and polarization vectors
are properties of the photon. The matrix elements

< n′l′m′ |
(

r p̂ + p̂ r

)
| nlm > (860)

are evaluated by first noting that

[ r , p̂2 ] = 2 i h̄ p̂ (861)

43J. A. Gaunt and W. H. McCrea, Proc. Camb. Phil. Soc. 23, 930 (1927).
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which allows the momentum operator to be written as

p̂ =
i m

h̄
[ Ĥ , r ] (862)

Therefore, the matrix elements of the dyadic can be expressed in the form of
the matrix elements of the commutator with the dyadic

< n′l′m′ |
(

r p̂ + p̂ r

)
| nlm > =

i m

h̄
< n′l′m′ | r [ Ĥ , r ] + [ Ĥ , r ] r | nlm >

=
i m

h̄
< n′l′m′ | [ Ĥ , r r ] | nlm >

= i m
( En′l′m′ − Enlm )

h̄
< n′l′m′ | r r | nlm >

= i m ωn′,n < n′l′m′ | r r | nlm > (863)

The decay rate in the Fermi-Golden rule, evaluated in the electric quadrupole
approximation, is given by

1

τ
=

(
e

m c

)2 ∫
d3k

m2 c2 ω2
k

8 π ωk

∑

α

| k . < n′l′m′ | r r | nlm > . ǫ̂α(k) |2

× δ( Enlm − En′l′m′ − h̄ ωk )

=
e2

8 π h̄

(
ωnl,n′l′

c

)5 ∫
dΩk

∑

α

| k̂ . < n′l′m′ | r r | nlm > . ǫ̂α(k) |2

(864)

where, in the second line k is restricted to have the magnitude

k =
ωnl,n′l′

c
(865)

The frequency is evaluated from

h̄ ωnl,n′l′ = Enl − En′l′

∼ m e4

h̄2 = m c2
(
e2

h̄ c

)2

∼ e2

a
(866)

Hence,

1

τ
∼

(
e2

h̄ a c

)5
e2

8 π h̄

∫
dΩk

∑

α

| k̂ . < n′l′m′ | r r | nlm > . ǫ̂α(k) |2

∼
(
e2

h̄ c

)6
c

a
(867)
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Therefore, the scattering rate is determined by the ratio c
a

but also is modified
by the sixth power of the dimensionless electromagnetic coupling strength

(
e2

h̄ c

)
≈ 1

137.0359979
(868)

The smallness of this factor allows us to only consider the Fermi-Golden rule
expression for the decay rate. The dimensionless quadrupole matrix elements
are expected to be non-zero, since they obey the selection rules which involve
the exchange of two units of angular momentum. They are non-zero, as can
be directly verified by performing an integration. Therefore, the quadrupole
allowed decay rate is given by

1

τ
∼
(
e2

h̄ c

)6
c

a
(869)

Hence, the time scale τ is expected to be of the order of 10−6 seconds44.

This type of transition is known as an electric quadrupole transition. Because
of the transversality condition

k̂ . ǫ̂α(k) = 0 (870)

one can add a diagonal term to the dyadic without affecting the result. A
diagonal term with a magnitude that makes the resulting dyadic traceless is
added to the dyadic, leading to the expression

Qi,j = e

(
xi xj − 1

3
δi,j | r |2

)
(871)

Therefore, the transition rate is governed by the electric quadrupole tensor

< n′l′m′ | Qi,j | nlm > (872)

The symmetric dyadic Qi,j has six inequivalent components, which because of
the restriction that the dyadic is traceless, can be reduced to five independent
components. Due to the transformational properties of the dyadic under ro-
tation, it can be expressed as a linear combination of the spherical harmonics
Y 2
m(θ, ϕ) and nothing else45. This can be seen from rewriting the quadrupole

tensor Q̃

Q̃

e
=




xx− r2

3 xy xz

yx yy − r2

3 yz

zx zy zz − r2

3


 (873)

44This estimate will be modified upwards by several orders of magnitude, due to the presence
of a large dimensionless factor that was not accounted for.

45The transformational properties of the dyadic follow immediately from the transforma-
tional properties of the vector r
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in terms of spherical polar coordinates

Q̃

e r2
=




1
2 sin2 θ cos 2ϕ− 1

6 (3 cos2 θ − 1) 1
2 sin2 θ sin 2ϕ sin θ cos θ cosϕ

1
2 sin2 θ sin 2ϕ − 1

2 sin2 θ cos 2ϕ− 1
6 (3 cos2 θ − 1) sin θ cos θ sinϕ

sin θ cos θ cosϕ sin θ cos θ sinϕ 1
3 (3 cos2 θ − 1)




(874)
The presence of states with orbital angular momentum of only two makes the
dyadic an irreducible second rank tensor. Application of the Wigner-Eckart
theorem to an irreducible second rank tensor results in the electric quadrupole
selection rules

l + l′ ≥ 2 ≥ | l − l′ | (875)

The angular momentum carried away by the photon consists of the spin-one
carried away by the photon in addition to the component of the photon’s wave
function described by the spherical Bessel function j1(kr) ∼ k r which carries
off one unit of orbital angular momentum. In addition to the angular momen-
tum selection rules, there are parity selection rules for the electric quadrupole
transitions. Since the parity operator satisfies

P̂ r P̂−1 = − r (876)

then the electric quadrupole matrix elements satisfy

< n′ | r r | n > = < n′ | P̂ r r P̂−1 | n >

= pn′ pn < n′ | r r | n > (877)

Therefore, the parity does not change in an electric quadrupole transition as
pn′ pn = 1.

The magnetic dipole matrix elements are given by

1

2

(
( k . r ) ( ǫ̂α(k) . p̂ ) − ( k . p̂ ) ( ǫ̂α(k) . r )

)
(878)

which can be re-written as

1

2

(
( k ∧ ǫ̂α(k) ) . ( r ∧ p̂ )

)
(879)

The first term is of the form

B = ∇ ∧ A → k ∧ A → ∇ ∧ ǫ̂α(k) (880)

and the second term
r ∧ p (881)

is the orbital angular momentum. The orbital angular momentum produces the
orbital magnetic moment given by

µ =
e

2 m c
( r ∧ p ) (882)

147



The magnetic dipole transition should be extended from orbital angular mo-
mentum to include the spin magnetic moment which is of the same order

(
e h̄

2 m c

)
σ . ( k ∧ ǫ̂α(k) )

(
e

2 m c

)
( r ∧ p ) . ( k ∧ ǫ̂α(k) ) (883)

since orbital angular momentum is quantized in units of h̄. The angular mo-
mentum selection rule for the magnetic dipole transition is given by

∆l = 0 (884)

and
1 ≥ | ∆m | (885)

also parity does not change.

Terms with higher-order orbital angular momentum that occur in the ex-
pansion of the photon’s wave function exp[ i k . r ] can be found by using the
Rayleigh expansion. The terms with orbital angular momentum l are propor-
tional to the spherical harmonics jl(kr) which vary as (kr)l when kr → 0, as is
found from the expansion of the exponential term. The presence of the extra
factors kl in the matrix element has the result that the electric 2s-th multi-pole
transition rates are found to vary as

1

τ
∝
(
ωn,n′

c

)2s+1

a2s (886)

where s is the magnitude of the change in the electronic orbital angular mo-
mentum, which satisfies the inequality

( l + l′ ) ≥ s ≥ | l′ − l | (887)

The extra factors from the photon’s angular momentum results in an overall de-

crease in the electric multi-pole transition rate by a factor of ( e
2

h̄ c
)2s. It should

also be noted that the relative strength of the higher-order electric multi-pole
transitions increase more rapidly with Z than the electric dipole transitions.
Therefore, it is frequently found that the quadrupole transitions cannot be ne-
glected for the heavy elements. Alternatively, higher-order multipole transitions
do become important in the x-ray region, since in this region the wavelength of
the radiation is comparable to the spatial extent of the charged particle’s wave
function.

11.1.8 The 3d→ 1s Electric Quadrupole Transition Rate

The transition 3d → 1s is forbidden to occur via the dipole process, since it
involves a change of l by two units. It may occur as an electric quadrupole
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transition. The electric quadrupole transition rate can be expressed as

1

τ
=

1

8 π h̄

(
ω

c

)5 ∫
dΩk

∑

α

| k̂ . < 1s | Q̃ | 3d > . ǫ̂α(k) |2 (888)

where Q̃ represents the quadrupole tensor. The frequency factor can be evalu-
ated as (

ω

c

)
=

4

9 a

(
e2

h̄ c

)
(889)

hence, the rate can be expressed in the form

1

τ
=

c

8 π a

(
4

9

)5 (
e2

h̄ c

)6 ∫
dΩk

∑

α

1

e2 a4
| k̂ . < 1s | Q̃ | 3d > . ǫ̂α(k) |2

(890)
We shall consider the transition from the m = 0 state of the 3d level to the 1s
state. As can be easily shown, the matrix elements of quadrupole tensor for this
transition are diagonal and are given by

< 1s | Q̃ | 3d > = < 1s |




− Qzz

2 0 0

0 − Qzz

2 0
0 0 Qzz


 | 3d > (891)

Therefore, the transition matrix elements are of the form
∫

dΩk
∑

α

1

e2 a4
| k̂ . < 1s | Q̃ | 3d > . ǫ̂α(k) |2

=

∫
dΩk

∑

α

| < 1s | Qzz | 3d > |2
e2 a4

(
k̂z ǫ̂α(k)z − 1

2
k̂x ǫ̂α(k)x − 1

2
k̂y ǫ̂α(k)y

)2

(892)

The direction of the emitted photon k̂ is expressed as

k̂ = (sin θk cosϕk, sin θk sinϕk, cos θk) (893)

and the polarization vectors are given by

ǫ̂1(k) = (cos θk cosϕk, cos θk sinϕk,− sin θk)

ǫ̂2(k) = (− sinϕk, cosϕk, 0) (894)

Thus for them = 0 level, one finds that the integral over the angular distribution
is given by

∫
dΩk

∑

α

1

e2 a4
| k̂ . < 1s | Q̃ | 3d > . ǫ̂α(k) |2

=

∫
dΩk

| < 1s | Qzz | 3d > |2
e2 a4

(
− 3

2
sin θk cos θk

)2

=
3

10
4 π

| < 1s | Qzz | 3d > |2
e2 a4

(895)
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The scattering rate becomes

1

τ
=

3

20

(
4

9

)5
c

a

(
e2

h̄ c

)6 | < 1s | Qzz | 3d > |2
e2 a4

(896)

The dimensionless quadrupole matrix elements are evaluated as the product of
an angular integral and a radial integral

< 1s | Qzz | 3d >

e a2
=

∫
dΩ Y 0

0 (θ, ϕ)∗
1

3
( 3 cos2 θ − 1 ) Y 2

0 (θ, ϕ)

×
∫ ∞

0

dr r2 R∗
1s(r)

r2

a2
R3d(r)

= − 1

3

√
4

5
4

(
3

4

) 9
2

(897)

Finally, one finds the resulting expression for the quadrupole decay rate of the
3d state with m = 0

1

τ
=

1

3600

c

a

(
e2

h̄ c

)6

(898)

which is evaluated as 228 sec−1. From the above analysis, it is seen that angular
distribution for the emitted photon is governed by the factor

cos2 θk sin2 θk (899)

and the intensity is largest for the cone with θk ≈ 0.28 π or 0.72 π. This angular
dependence of the emitted radiation is the same as found by considering the
radiation from an oscillating classical quadrupole, for which the radiated power
is given by

(
dP

dΩk

)

quad
=

c

288 π

(
ω

c

)6

Q2 cos2 θk sin2 θk (900)

However, the angular distribution of the emitted quadrupole radiation is to
be contrasted with the ∆m = 0 decay of a 2p electron, that has an angular
distribution of emitted photons given by

sin2 θk (901)

which is maximum for θk = π
2 .

The 3d → 1s quadrupole decay rate will be dwarfed by dipole allowed cas-
cade emission processes such as 3d → 2p followed by 2p → 1s. Therefore, the
intensity of the emitted light corresponding to the 3d→ 1s process is expected
to be extremely weak. However, the quadrupole line is expected to be much
more readily observed in absorption spectra.
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θ

m = 0

Figure 23: The angular distribution of quadrupole radiation for the ∆m = 0
transition, as a function of polar angle θk.

11.1.9 Two-photon decay of the 2s state of Hydrogen.

The 2s state of the hydrogen atom can not decay via the paramagnetic interac-
tion since, as it can be shown that the matrix elements that govern the emission
intensity vanish

< 1s | ǫ̂α(k) . p̂ exp

[
− i k . r

]
| 2s > = 0 (902)

First on integrating by parts, the matrix elements can be written as

i h̄ < 1s | ǫ̂α(k) . ∇ exp

[
− i k . r

]
| 2s >

= + i h̄ < 2s | exp

[
+ i k . r

]
ǫ̂α(k) . ∇ | 1s >∗

(903)

On utilizing the expression for the 1s wave function

ψ1s(r) =
1√
π a3

exp

[
− r

a

]
(904)

one finds that

∇ψ1s(r) = − r

r

ψ1s(r)

a
(905)
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Hence, the transition matrix element is given by

− i
h̄

a

∫ ∞

0

d3r ψ2s(r) exp

[
− i k . r

]
ǫ̂α(k) . r

r
ψ∗

1s(r) (906)

The matrix elements can be simply evaluated in spherical polar coordinates if
one chooses the direction of k as the polar axis. The plane-wave, therefore, only
depends on the z-component of r and since

ǫ̂α(k) . k = 0 (907)

the factor ǫ̂α(k) . r only depends on x and y and is antisymmetric with respect
to the transformations x → − x and y → − y. All other factors are even
functions of x and y. On integrating over the directions in the x− y plane, one
finds that the integral is identically zero.

The above result could have been (partially) anticipated by considering the
selection rules. The electric dipole transition is forbidden by parity. The mag-
netic dipole transition is zero in this non-relativistic treatment. All magnetic
and electric quadrupole and higher multipole transitions are forbidden by an-
gular momentum conservation.

The 2s state decays via two-photon emission which is described by the dia-
magnetic interaction and by the effect of the paramagnetic interaction taken to
second-order in time-dependent perturbation theory. Since only the part of the
paramagnetic interaction that creates a photon is involved, for our purposes the
paramagnetic interaction can be replaced by

Ĥpara → − q

m c

∑

k,α

(
2 π h̄ c2

V ωk

) 1
2

p̂ . ǫ̂α(k) a†k,α exp

[
− i k . r

]
(908)

Likewise, the diamagnetic interaction can be replaced by

hk

n'
n

Figure 24: The one-photon emission part of the paramagnetic interaction.
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Ĥdia → q2

2 m c2

∑

k,α;k′,α′

(
2 π h̄ c2

V

)
ǫ̂α(k) . ǫ̂α′(k′)√

ωk ωk′
a†k,α a

†
k′,α′ exp

[
− i ( k + k′ ) . r

]

(909)
for two-photon emission. The system is assumed to be initially in an eigenstate

2s
1s

(k',α')

(k,α)

Figure 25: The two-photon emission part of the diamagnetic interaction.

of the unperturbed Hamiltonian | n > but, due to the interaction Ĥint makes
transitions to states | n′ >. These states are to be considered as products
of the electronic states and the states of the electromagnetic cavity. Following
the usual procedure of time-dependent perturbation theory, the above state
| ψn > can be decomposed in terms of a complete set of non-interacting energy
eigenstates | n > via

| ψn > =
∑

n′

Cn′(t) exp

[
− i

h̄
En′ t

]
| n′ > (910)

where Cn′(t) are time-dependent coefficients. The probability of finding the
system in the final state | n′ > at time t is then given by |Cn′(t)|2. The rate
at which the transition n → n′ occurs is then given by the time-derivative of
|Cn′(t)|2.

It shall be assumed that the interaction is slowly turned on when t → − ∞.
The interaction can be reduced to zero at large negative times by introducing a
multiplicative factor of exp[ + η t ] in the interaction, where η is an infinitesi-
mally small positive constant. To first-order in the diamagnetic interaction, one
finds

C
(1)
n′ (t) =

( − i

h̄

)
< n′ | exp[ − i ( k′ + k ) . r ] | n >

(
q2

2 m c2

) (
2 π h̄ c2√
ωk ωk′ V

)

× 2 ǫ̂α(k) . ǫ̂α′(k′)

∫ t

−∞
dt′ exp

[
i

h̄
( h̄ ω′ + h̄ ω + En′ − En ) t′

]

(911)

where ω = c k and ω′ = c k′ are the energies of the two photons in the final
state. It should be noted that, since we have evaluated the photonic part of the
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initial and final state, the labels n and n′, now only describe the electronic part
of the inital and final states. The small quantity η has been absorbed as a small
imaginary part to the initial state energy

En → En + i η h̄ (912)

The paramagnetic interaction is of order of q and the diamagnetic interaction
is of order q2. Thus, to second-order in q, one must include the diamagnetic
interaction and the paramagnetic interaction to second-order. There are two
second-order terms which represent:

(a) emission of the photon (k, α) followed by the emission of a photon (k′, α′).

(b) emission of a photon (k′, α′) followed by the emission of the photon (k, α).

n

n''

n'

(k,α) (k',α')

n

n''

n'

(k,α)(k',α')

Figure 26: The two-photon emission processes to the paramagnetic interaction
to second-order.

The second-order contribution to the transition amplitude is given by

C
(2)
n′ (t) =

( − i

h̄

)2 (
q

m c

)2 (
2 π h̄ c2√
ωk ωk′ V

) ∫ t

−∞
dt′

∫ t′

−∞
dt′′

[ ∑

n′′

exp[
i

h̄
(En′ + h̄ω′ − En′′) t′ ] exp[

i

h̄
(En′′ + h̄ω − En) t

′′ ]

× < n′l′m′ | ǫ̂α′(k′) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | ǫ̂α(k) . p̂ | nlm >

+
∑

n′′

exp[
i

h̄
(En′ + h̄ω − En′′) t′ ] exp[

i

h̄
(En′′ + h̄ω′ − En) t

′′ ]

× < n′l′m′ | ǫ̂α(k) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | ǫ̂α′(k′) . p̂ | nlm >

]

(913)

The earliest time integration can be evaluated leading to

C
(2)
n′ (t) =

( − i

h̄

) (
q

m c

)2 (
2 π h̄ c2√
ωk ωk′ V

) ∫ t

−∞
dt′

∑

n′′

exp[
i

h̄
(h̄ω′ + En′ − En − h̄ω) t′ ]
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[
< n′l′m′ | ǫ̂α′(k′) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | ǫ̂α(k) . p̂ | nlm >

( En − En′′ − h̄ ω )

+
< n′l′m′ | ǫ̂α(k) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | ǫ̂α′(k′) . p̂ | nlm >

( En − En′′ − h̄ ω′ )

]
(914)

as long as the denominators are non-vanishing.

The coefficients C
(1)
n′ (t) and C

(2)
n′ (t) have the same type of time-dependence.

The remaining integration over time yields

( − i

h̄

) ∫ t

−∞
dt′ exp

[
i

h̄
(h̄ω′ + h̄ω + En′ − En − ih̄η) t′

]

= − exp[ i
h̄

(h̄ω′ + h̄ω + En′ − En − ih̄η) t ]

(h̄ω′ + h̄ω + En′ − En − ih̄η)
(915)

The transition rate is given by

1

τ
=

∂

∂t

( ∣∣∣∣ C
(1)
n′ (t) + C

(2)
n′ (t)

∣∣∣∣
2 )

(916)

but the time-dependence of the squared modulus is contained in the common
factor

∣∣∣∣
exp[ i

h̄
(h̄ω′ + h̄ω + En′ − En − ih̄η) t ]

(h̄ω′ + h̄ω + En′ − En − ih̄η)

∣∣∣∣
2

=

exp

[
2 η t

]

(h̄ω′ + h̄ω + En′ − En)2 + h̄2η2

(917)
Since the momenta and polarizations of the emitted photons are not measured,
the rate is summed over (k, α) and (k′, α′). Therefore, the transition rate is
given by the expression

1

τ
=

∑

k,α:k′,α′

2 η exp

[
2 η t

]

(h̄ω′ + h̄ω + En′ − En)2 + h̄2η2
M2 (918)

where the matrix elements M are due to the combined effect of the diamagnetic
interaction and the paramagnetic interaction taken to second-order. That is,

M = < 1s kα, k′α′ | Ĥdia | 2s >

+
∑

n′′l′′m′′

< 1s k α, k′α′ | Ĥpara | n′′l′′m′′ k′α′ > < n′′l′′m′′ k′α′ | Ĥpara | 2s >

E2s − En′′l′′m′′ − h̄ωk′

+
∑

n′′l′′m′′

< 1s k α, k′α′ | Ĥpara | n′′l′′m′′ kα > < n′′l′′m′′ kα | Ĥpara | 2s >

E2s − En′′l′′m′′ − h̄ωk

(919)
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These three terms add coherently, and it should be noted that the intermediate
state is only a virtual state and it can have a higher-energy than the 2s state46.
In the limit η → 0 the first term in the expression for the transition rate
of eqn(918) reduces to a delta function which expresses conservation of energy
between the initial and final states.

lim
η→0

1

π

η exp

[
2 η t

]

(h̄ω′ + h̄ω + En′ − En)2 + h̄2η2
= δ( E2s − E1s − h̄ωk′ − h̄ωk )

(920)
In the limit η → 0 the transition rate reduces to the Fermi-Golden rule
expression

1

τ
=

2π

h̄

∑

k,α:k′,α′

| M |2 δ( E2s − E1s − h̄ωk′ − h̄ωk ) (921)

The emitted photons have continuous spectra. In the expression for the matrix
elements M , the last two terms differ in the time-order that the two photons
are emitted. On inserting the expressions for the interactions into M , one can
pull out the common factors leaving a dimensionless matrix element M ′. This
leads to the expression

M =

(
q2

2 m c2

) (
2 π h̄ c2

V

)
1√

ωk ωk′
M ′ (922)

where M ′ is the dimensionless factor given by

M ′ = ǫ̂α(k) . ǫ̂α′(k′) < 1s | exp

[
− i ( k + k′ ) . r

]
| 2s >

+
2

m

∑

n′′l′′m′′

< 1s | ǫ̂α(k) . p̂ exp[ − i k . r ]| n′′l′′m′′ > < n′′l′′m′′ | ǫ̂α′(k′) . p̂ exp[ − i k′ . r ] | 2s >

E2s − En′′l′′m′′ − h̄ωk′

+
2

m

∑

n′′l′′m′′

< 1s | ǫ̂α′(k′) . p̂ exp[ − i k′ . r ]| n′′l′′m′′ > < n′′l′′m′′ | ǫ̂α(k) . p̂ exp[ − i k . r ] | 2s >

E2s − En′′l′′m′′ − h̄ωk

(923)

The first term is negligible, since 1 ≫ k . r and the electronic eigenstates
are orthogonal. The order of magnitude of the second term is given by the
electronic kinetic energy divided by the excitation energy. Hence, the reduced
matrix elements have a magnitude of the order of unity. The transition rate is
given by

1

τ
=

(
e2

2 m c2

)2
( 2 π )3

V 2

∑

k,α;k′,α′

h̄ c2

k k′
|M ′|2 δ( E2s − E1s − h̄ωk − h̄ωk′ )(924)

46Due to the Lamb shift, there is a 2p state with slightly lower energy than the 2s state.
However, due to the small magnitude of the energy difference, the part of the decay process
involving any real 2p transition is negligibly small.
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One can assume that the dipole matrix elements of the intermediate states
should be randomly oriented in space, since the initial and final electronic states
are isotropic. After summing over the polarizations, the transition rate becomes
isotropic. On setting ∑

α,α′

| M ′ |2 ≈ 1 (925)

one finds

1

τ
=

(
e2

2 m c2

)2
h̄ c2

( 2 π )3

∫
d3k

k

∫
d3k′

k′
δ( E2s − E1s − h̄ωk − h̄ωk′ )(926)

Since the integrand is independent of the direction of k and k′, the angular
integrations can be performed leaving

1

τ
=

(
e2

m c2

)2
h̄ c2

2 π

∫ ∞

0

dk k

∫ ∞

0

dk′ k′ δ( E2s − E1s − h̄ωk − h̄ωk′ )(927)

On integrating over k′, one obtains

1

τ
=

(
e2

m c2

)2
c

2 π

∫ ω
c

0

dk k (
ω21

c
− k ) (928)

where ω12 is related to the energy difference of the 1s and 2s states. An ele-
mentary integration yields

1

τ
=

(
e2

m c2

)2
c

12 π

(
ω12

c

)3

(929)

The first factor has dimensions of length squared and can be recognized as the
square of the classical radius of the electron. However, since

ω12

c
=

3

8

e2

h̄ c a
(930)

and

a =
h̄2

m e2
(931)

or
e2

m c2
=

a e4

h̄2 c2
(932)

one finds the decay rate is approximated by

1

τ
=

1

12 π

(
3

8

)3
c

a

(
e2

h̄ c

)7

(933)

Thus, the estimated decay rate is 8.75 sec−1. The exact value calculated by
Shapiro and Breit47 is 8.266 sec−1.

47J. Shapiro and G. Breit, Phys. Rev. 113, 179 (1959).
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11.1.10 The Absorption of Radiation

If a process occurs in which only a photon with quantum numbers (k, α) is
absorbed, then the numbers of quanta in the initial and final state of the elec-
tromagnetic field are given by

n′k,α = nk,α − 1

n′k′,β = nk′,β (934)

The matrix elements of the paramagnetic interaction are given by

< n′l′m′ {n′k′,β} | Ĥpara | nlm {nk′,β} >

= −
(

q

m c

) ∑

k,α

√
nk,α

√
2 π h̄ c2

V ωk
< n′l′m′ | p̂ . ǫ̂α(k) exp

[
+ i k . r

]
| nlm >

(935)

The photon absorption rate is found from the Fermi-Golden rule expression

1

τ
=

2 π

h̄

(
q

m c

)2 (
2 π h̄ c2

V ωk

)
nk,α

∑

n′l′m′

δ( Enlm + h̄ωk − En′l′m′ )

× | < n′l′m′ | p̂ . ǫ̂α(k) exp

[
+ i k . r

]
| nlm > |2 (936)

This is related to the lifetime due to stimulated emission, if the initial and final
states are interchanged.

The scattering cross-section for photon absorption σabsorb(ω) is found by
relating the number of photons absorbed (per second) to the product of the
incident flux and the cross-section. The photon flux is given by the photon
density times the velocity of light

j =
nk,α

V
c k̂ (937)

Hence, the cross-section can be written as

σabsorb(ωk) =

(
V

nk,α c

)
2 π

h̄

(
q

m c

)2 (
2 π h̄ c2

V ωk

)
nk,α

∑

n′l′m′

δ( Enlm + h̄ωk − En′l′m′ )

× | < n′l′m′ | p̂ . ǫ̂α(k) exp

[
+ i k . r

]
| nlm > |2 (938)

which simplifies to

σabsorb(ωk) =

(
4 π2 e2

m2 ωk c

) ∑

n′l′m′

δ( Enlm + h̄ωk − En′l′m′ )

× | < n′l′m′ | p̂ . ǫ̂α(k) exp

[
+ i k . r

]
| nlm > |2

(939)
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The absorption cross-section is independent of the volume of the electromag-
netic cavity and the number of photons in the incident beam. As a function of
frequency, the Born approximation for the cross-section for photon absorption
contains delta function lines corresponding to the atomic excitation energies.
Measured absorption lines do have natural widths ∆ωnl,n′l′ and the absorbtion
spectra can be approximated by the sums of Lorentzian functions. The widths
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Figure 27: A sketch of the photon absorption cross-section σ(ω) (in units of
h̄2

m
) as a function of photon energy h̄ω (in units of Rydbergs). The plot over-

emphasizes the role of the photon lifetimes, since the ratio of the line-width to

the photon frequency is of the order of ( e
2

h̄c
)3.

of the lines are governed by half the sum of the decay rates of the initial and
final electronic levels.

∆ωnl,n′l′ =
1

2

(
1

τnl
+

1

τn′l′

)
(940)

This formula implies that rapidly decaying levels will yield broad lines, but does
not imply the converse48. The spectral widths can be described by the inclu-
sion of the effects of interaction to higher orders49. The higher-order processes
produce small shifts of the atomic energy levels and also give the energies small
imaginary parts, resulting in a Lorentzian line shape. Since a typical atomic
transition rate is of the order of 108 sec−1 and a typical photon frequency is of
the order of 1015 sec−1, the widths of the lines can usually be neglected.

The absorption cross-section can be evaluated in the dipole approximation

σabsorb(ωk) =

(
4 π2 e2

m2 ωk c

) ∑

n′l′m′

δ( Enlm + h̄ωk − En′l′m′ )

48Lines in the absorption spectra with weak intensities can be broad if the final states are
rapidly decaying.

49V. F. Weisskopf and E. Wigner, Z. Physik, 63, 54 (1930), Zeit. für Physik, 65, 18 (1930).
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× | < n′l′m′ | p̂ . ǫ̂α(k) | nlm > |2 (941)

which can be re-written as

σabsorb(ωk) =

(
4 π2 e2 ωk

c

) ∑

n′l′m′

δ( Enlm + h̄ωk − En′l′m′ )

× | < n′l′m′ | r . ǫ̂α(k) | nlm > |2 (942)

For an isotropic medium, the electronic states are degenerate with respect to
the z-components of the orbital angular momentum, so the initial state (n, l,m)
should be averaged over the different values of m

1

(2l + 1)

l∑

m=−l
(943)

and the values of m′ for the final states are summed over all possible values.
This averaging process results in an isotropic absorption rate, and is equivalent
to averaging the polarization vector over all directions in space. Therefore, in
the dipole approximation, the absorption cross-section for an isotropic medium
is given by the expression

σabsorb(ω) =
4 π2

3

(
e2

h̄ c

) ∑

n′l′m′

ωn′l′,nl | < n′l′m′ | r | nlm > |2 δ(ωn′l′,nl − ω )

(944)
The strength of each absorption line can be found by integrating the cross-
section over a narrow frequency range centered on the frequency of the absorp-
tion line. (More specifically, the width of the interval of integration must be
greater than the natural line-width.) The integrated intensity of the transition
(nlm) → (n′l′m′) is given by

∫ ωnl,n′l′+ǫ

ωnl,n′l′−ǫ
dω σabsorb(ω) =

4 π2

3

(
e2

h̄ c

)
ωn′l′,nl | < n′l′m′ | r | nlm > |2

(945)
The intensity of each line is proportional to the “oscillator strength” fnl→n′l′

defined as

fnl→n′l′ =
2 m ωn′l′,nl

h̄
| < n′l′m′ | r | nlm > |2 (946)

The intensities and the frequencies of all the transitions are related via sum
rules50. These sum rules involve quantities of the form

∑

n′l′m′

ωpn′l′m′,nlm | < n′l′m′ | r | nlm > |2 (947)
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Table 5: Sum Rules for Dipole Transitions

p
∑
n′l′m′ ω

p
n′l′m′,nlm | < n′l′m′ | r | nlm > |2

0 < nlm | r2 | nlm >

1 3 h̄
2 m

2 2
m

( Enlm − < nlm | V | nlm > )

3 h̄
2 m

< nlm | ∇2V | nlm >

and have values given in the Table(5). The sum rules can be used to provide
checks of experimental data.

Sum Rules for Dipole Radiation

There exists a systematic way of deriving sum rules for the weighted inten-
sities of the dipole allowed transitions. The sum rules are of the form

∑

n′l′m′

ωpnl,n′l′ | < nlm | Â | n′l′m′ > |2 (948)

where
h̄ ωnl,n′l′ = Enl − En′l′ (949)

and p is a positive integer.

Consider the expression

F (t) = < nlm | Â(t) Â†(0) | nlm > (950)

where the operator Â(t) is given in the Heisenberg representation

Â(t) = exp

[
+

i

h̄
Ĥ0 t

]
Â exp

[
− i

h̄
Ĥ0 t

]
(951)

50W. Thomas, Naturwiss. 11, 527 (1925).
F. Reiche and W. Thomas, Zeit. für Physik, 34, 510 (1925).
W. Kuhn, Zeit. für Physik, 33, 408 (1925).
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Then, on taking successive derivatives of F (t) with respect to t, one finds

(
∂F

∂t

)
=

i

h̄
< nlm | [ Ĥ0 , Â(t) ] Â†(0) | nlm > (952)

and

(
∂2F

∂t2

)
=

(
i

h̄

)2

< nlm | [ Ĥ0 , [ Ĥ0 , Â(t) ] ] Â†(0) | nlm > (953)

etc. This process shows that the p-th derivative is expressed as p nested com-
mutators
(
∂pF

∂tp

)
=

(
i

h̄

)p
< nlm | [ Ĥ0 , [ . . . [ Ĥ0 , [ Ĥ0 , Â(t) ] ] . . . ] ] Â†(0) | nlm >

(954)
Alternatively, one can insert a complete set of states in the definition for F (t)
yielding

F (t) =
∑

n′l′m′

< nlm | Â(t) | n′l′m′ > < n′l′m′ | Â†(0) | nlm > (955)

but since the states | nlm > are eigenstates of Ĥ0, one has

F (t) =
∑

n′l′m′

exp

[
i ωnl,n′l′ t

] ∣∣∣∣ < nlm | Â | n′l′m′ >

∣∣∣∣
2

(956)

On taking the p-th derivative of this form of F (t), one finds

(
∂pF

∂tp

)
=

∑

n′l′m′

ip ωpnl,n′l′ exp

[
i ωnl,n′l′ t

] ∣∣∣∣ < nlm | Â | n′l′m′ >

∣∣∣∣
2

(957)

The sum rules are found by equating the two forms of the p-th time-derivative
and then setting t = 0

∑

n′l′m′

(
Enl − En′l′

)p ∣∣∣∣ < nlm | Â | n′l′m′ >

∣∣∣∣
2

= < nlm | [ Ĥ0 , [ . . . , [ Ĥ0 , [ Ĥ0 , Â ] ] . . . ] ] Â† | nlm >(958)

Hence, the p-th moment of the matrix elements of Â is related to the expecta-
tion value of the product of the p-th nested commutator of Ĥ0 and Â multiplied
by Â†.

The expectation value of p nested commutators of Â can be expressed as the
expectation value of the product of p−q nested commutators of Â with q nested
commutators of Â†. This can be demonstrated by noting that the expectation
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value is homogeneous in time. The q-th nested commutator of the operator Â
can be defined by

B̂q = [ Ĥ0 , B̂q−1 ] (959)

where
B̂0 = Â (960)

Likewise, Ĉq can be defined as the q-th nested commutator of Â†. However, for

any pair of operators B̂p−q−1 and Ĉq, one has

< nlm | B̂p−q−1(t) Ĉq(0) | nlm >

=
∑

n′l′m′

exp

[
i ωnl,n′l′ t

]
< nlm | B̂p−q−1 | n′l′m′ > < n′l′m′ | Ĉq | nlm >

= < nlm | B̂p−q−1(0) Ĉq(−t) | nlm > (961)

This is an expression of the homogeneity of time. Hence, on taking a derivative
with respect to t and then setting t = 0, one finds

< nlm | [ Ĥ0 , B̂p−q−1 ] Ĉq | nlm > = ( − 1 ) < nlm | B̂p−q−1 [ Ĥ0 , Ĉq ] | nlm >

(962)

On using the definition of the operators B̂p and Cq, the above equation reduces
to

< nlm | B̂p−q Ĉq | nlm > = ( − 1 ) < nlm | B̂p−q−1 Ĉq+1 | nlm > (963)

By induction, this shows that the nested commutators can be distributed be-
tween the two sides of the expression.

< nlm | B̂p Ĉ0 | nlm > = ( − 1 )q < nlm | B̂p−q Ĉq | nlm > (964)

which was to be shown.

11.1.11 The Photoelectric Effect

The differential scattering cross-section for the absorption of a photon by a
hydrogen atom in the ground state accompanied by the emission of an electron
shall be derived. For emitted electrons with sufficiently high energies, the wave
function for the photo-emitted electron can be approximated by a plane-wave.
The transition rate is given by the Fermi-Golden rule expression involving the
paramagnetic interaction

1

τ
=

2 π

h̄

(
e

m c

)2 (
2 π h̄ c2

V ωk

)
nk,α

∑

k′

| < k′ | p . ǫ̂α(k) exp

[
i k . r

]
| 1s > |2 δ( E1s + h̄ ωk −

h̄2 k′2

2 m
)

(965)
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The cross-section is given by

σ =
∑

k′

(
4 π2 e2

m2 ωk c

)
| < k′ | p . ǫ̂α(k) exp

[
i k . r

]
| 1s > |2 δ( E1s + h̄ ωk −

h̄2 k′2

2 m
)

(966)
where the initial wave function is given by

ψ1s(r) =
1√
π a3

exp

[
− r

a

]
(967)

As long as the emitted electron is not close to threshold, the final state wave
function can be approximated by a plane-wave

ψk′(r) =
1√
V

exp

[
i k′ . r

]
(968)

The sum over final states of the electron can be replaced by an integral over the
magnitude of its momentum and its direction

∑

k′

→ V

( 2 π )3

∫ ∞

0

dk′ k′2
∫

dΩk′ (969)

It is seen that the factor of the volume in the density of final states cancels with
the factors from the normalization of the electron’s final state. The differential
cross-section corresponds to the part of the cross-section where the outgoing
electron is emitted into the solid angle dΩk′ . Hence,

dσ

dΩ′ =
V

2 π

(
e2

m2 ωk c

) ∫ ∞

0

dk′ k′2 | < k′ | p . ǫ̂α(k) exp

[
i k . r

]
| 1s > |2 δ( E1s + h̄ ωk −

h̄2 k′2

2 m
)

(970)
The integration over the magnitude of electron’s final momentum k′ can be
performed by using the properties of the energy conserving delta function. The
magnitude of electron’s final momentum is denoted by kf

k2
f =

2 m

h̄2 ( h̄ωk + E1s ) (971)

The result of the integration over k′ is

dσ

dΩ′ =
V

2 π h̄2

(
e2

m ωk c

)
kf | < kf dΩ

′ | p . ǫ̂α(k) exp

[
i k . r

]
| 1s > |2

(972)
It is assumed that the initial photon is propagating along the x-axis and is
polarized along the z-direction. The matrix elements involving the momentum
operator only yield a finite result when p̂ acts on ψ1s(r), since k . ǫ̂α(k) = 0.
However,

ǫ̂α(k) . p̂ ψ1s(r) = i
h̄ cos θ

a
ψ1s(r) (973)
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Figure 28: The geometry for the photo-emission of an electron from an atom.
An electromagnetic wave, with polarization along the z-axis, is incident along
the x-axis. The photo-emitted electron propagates along the direction k′.

which results in the replacement p̂z → i h̄ cos θ
a

. Thus, one finds

dσ

dΩ′ =
V

2 π

(
e2

m ωk c a2

)
kf | < kf dΩ

′ | cos θ exp

[
i k . r

]
| 1s > |2 (974)

where (θ, ϕ) are the polar coordinates of the vector r. The matrix elements are
evaluated using the dipole approximation for the photon wave function and set

exp

[
i k . r

]
≈ 1 + i k . r + . . . (975)

and only keep the first term of the expansion. The factor cos θ can be expressed
as a spherical harmonic through

cos θ =

√
4 π

3
Y 1

0 (θ, ϕ) (976)

and the final state electronic wave function can be expressed in terms of the
Rayleigh expansion

exp

[
i kf k̂

′ . r

]
= 4 π

∑

l,m

il jl( kf r ) Y lm(θ, ϕ) Y lm
∗(θ′, ϕ′) (977)

where (θ′, ϕ′) are the polar coordinates of the electron’s final momentum. The
angular integration over the polar coordinates (θ, ϕ) can be performed by using
the orthogonality relations for the spherical harmonics. The end result is

< kf dΩ
′ | cos θ | 1s >= − 4 π i cos θ′

1√
π a3 V

∫ ∞

0

dr r2 j1(kfr) exp

[
− r

a

]

(978)
where the cos θ′ dependence refers to the direction of the emitted electron’s
angular momentum. The radial integral is evaluated to yield

< kf dΩ
′ | cos θ | 1s > = − 4 π i cos θ′

√
a3

π V

2 kf a

( 1 + k2
f a

2 )2
(979)
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Therefore, the differential cross-section is given by
(
dσ

dΩ′

)
= 8

(
kf
k

) (
e2 a

m c2

)
cos2 θ′

(
2 kf a

( 1 + k2
f a

2 )2

)2

(980)

Using

a =
h̄2

m e2
(981)

the photo-emission cross-section can be re-written as
(
dσ

dΩ′

)
= 8

(
kf
k

)
a2

(
e2

h̄ c

)2

cos2 θ′
(

2 kf a

( 1 + k2
f a

2 )2

)2

(982)

Thus, although the photon is propagating along the x-direction, the electron is
preferentially emitted along the direction of the polarization (θ′ ≈ 0). This can
be understood as being due to the effect of c being large, so that the photon’s
momentum is negligible compared with the energy, therefore, (in the dipole
approximation) only the direction of the polarization determines the angular
distribution of the emitted electron. It should be noted that in the relativistic
case, where the momentum of the photon is important, the electrons are pre-
dominantly ejected in the direction of the photon51. This formula also breaks
down for emitted electrons with low energies. In this case, the correct electronic
wave function for the continuous spectrum of Ĥ0 should be used52. The in-
clusion of the Coulomb attraction of the ion in the final state has the effect of
reducing the cross-section near the threshold.

11.1.12 Impossibility of absorption of photons by free-electrons.

Free electrons are described by the non-interacting Hamiltonian Ĥ0 where

Ĥ0 =
p̂2

2 m
(983)

which plane-waves as energy eigenstates

φk′(r) =
1√
V

exp

[
− i k′ . r

]
(984)

corresponding to the energy eigenvalues

Ek′ =
h̄2 k′2

2 m
(985)

The matrix elements for electromagnetic transitions in which a photon (k, α) is
absorbed is given by

−
(

q

m c

) √
2 π h̄ c

V ωk
< k′′ | p̂ . ǫ̂α(k) exp

[
+ i k . r

]
| k′ > √

nk,α (986)

51F. Sauter, Ann. Phys. 9, 217 (1931), Ann. Phys. 11, 454 (1931).
52M. Stobbe, Ann. Phys. 7, 661 (1930).
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which is evaluated as

−
(

q

m c

) √
2 π h̄ c

V ωk
p̂ . ǫ̂α(k) δk+k′−k′′

√
nk,α (987)

This shows that momentum is conserved. Furthermore, for the transition rate

p

p'
p''

Figure 29: The absorption of a photon via the paramagnetic interaction.

to represent a real process, it is necessary that energy is conserved between the
initial and final states

h̄ ωk +
h̄2 k′2

2 m
=

h̄2k′′2

2 m
(988)

It is impossible for this process to satisfy the conditions for conservation of
energy and momentum. This can be seen by appealing to the relativistic for-
mulation where the four-vector momentum is conserved

pµ + p′µ = p′′µ (989)

Hence,
( pµ + pµ′ ) ( pµ + p′µ ) = pµ′′ p′′µ (990)

but the electron’s momenta form a Lorentz scalar which is related to the rest
mass

pµ′ p′µ = pµ′′ p′′µ = m2 c2 (991)

and the photon has zero mass

pµ pµ = 0 (992)

Therefore, one finds that the cross-terms vanish

pµ p′µ = 0 (993)

In the rest frame of the electron one has pµ
′ = ( m c , 0 ), so the energy of

the photon is identically zero. Therefore, there is no photon and the absorption
process is impossible.
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11.2 Scattering of Light

Kramers and Heisenberg evaluated the scattering cross-section for light incident
on atomic electrons53. The incident photon is denoted by (k, α) and the scat-
tered photon by (k′, α′). The scattering cross-section involves the paramagnetic
interaction to second-order and the diamagnetic interaction to first-order. The
matrix elements of the diamagnetic interaction are given by

< n′l′m′k′α′ | Ĥdia | nlmkα > =

(
e2

2 m c2

)
< n′l′m′k′α′ | Â . Â | nlmkα >

=

(
e2

2 m c2

)
< n′l′m′k′α′ | ( ak,αa

†
k′,α′ + a†

k′,α′ak,α ) exp

[
i ( k − k′ ) . r

]
| nlmkα >

×
(

2 π h̄ c2√
ωk ωk′ V

)
ǫ̂α(k) . ǫ̂α′(k′) (994)

where it has been assumed that only the initial and final photon are present. On
making use of the long-wavelength approximation λ ≫ a, the matrix elements
simplify to

< n′l′m′k′α′ | Ĥdia | nlmkα > ≈
(

e2

2 m c2

)
< n′l′m′ | nlm >

×
(

2 π h̄ c2√
ωk ωk′ V

)
ǫ̂α(k) . ǫ̂α′(k′)

(995)

The scattering cross-section will be expressed in terms of a transition rate and
the transition rate will be calculated using a similar procedure to that which
was used in describing two-photon decay. An arbitrary state | ψn > can be
expressed in terms of a complete set of non-interacting states | n >

| ψn > =
∑

n′

Cn′(t) exp

[
− i

h̄
En′ t

]
| n′ > (996)

where Cn(t) are time-dependent coefficients. Initially, the system is assumed to
be in an energy eigenstate | n > of the unperturbed Hamiltonian, and due to
the interaction makes a transition to a state | n′ >. The probability of finding
the system in the state | n′ > at time t is then given by |Cn′(t)|2. It shall be
assumed that the interaction is turned off when t → − ∞. The interaction
can be turned off at large negative times by introducing a multiplicative factor
of exp[ + η t ] in the interaction, where η is an infinitesimally small positive
constant. To first-order in the diamagnetic interaction, one finds

C
(1)
n′ (t) =

( − i

h̄

)
δn′,n

(
e2

2 m c2

) (
2 π h̄ c2√
ωk ωk′ V

)
2 ǫ̂α(k) . ǫ̂α′(k′)

∫ t

−∞
dt′ exp

[
i

h̄
( h̄ ω′ + En′ − h̄ ω − En ) t′

]
(997)

53H. A. Kramers and W. Heisenberg, Z. Physik, 31, 681 (1925).
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where ω = c k and ω′ = c k′ and the long-wavelength approximation has
been used. The small quantity η has been absorbed as a small imaginary part
to the initial state energy

En → En + i η h̄ (998)

The paramagnetic interaction is of order of e and the diamagnetic interaction
is of order e2. Thus, to second-order in e, one must include the diamagnetic
interaction and the paramagnetic interaction to second-order. There are two

n n'

k' α'
k'' α''

Figure 30: Photon scattering processes due to the diamagnetic interaction to
first-order.

terms which are second-order in the paramagnetic interactions that represent:

(a) absorption of the photon (k, α) followed by the emission of a photon (k′, α′).

(b) emission of a photon (k′, α′) followed by the absorption of the photon (k, α).

n

n''

n'

(k,α) (k',α')

n

n''

n'

(k,α) (k',α')

Figure 31: Photon scattering processes due to the paramagnetic interaction to
second-order.

The second-order contribution to the transition amplitude is given by

C
(2)
n′ (t) =

( − i

h̄

)2 (
e

m c

)2 (
2 π h̄ c2√
ωk ωk′ V

) ∫ t

−∞
dt′

∫ t′

−∞
dt′′

[ ∑

n′′

exp[
i

h̄
(h̄ω′ + En′ − En′′) t′ ] exp[ − i

h̄
(En − En′′ + h̄ω) t′′ ]

169



× < n′l′m′ | ǫ̂α′(k′) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | ǫ̂α(k) . p̂ | nlm >

+
∑

n′′

exp[
i

h̄
(En′ − En′′ − h̄ω) t′ ] exp[ − i

h̄
(En − En′′ − h̄ω′) t′′ ]

× < n′l′m′ | ǫ̂α(k) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | ǫ̂α′(k′) . p̂ | nlm >

]

(999)

The earliest time integration can be evaluated leading to

C
(2)
n′ (t) =

( − i

h̄

) (
e

m c

)2 (
2 π h̄ c2√
ωk ωk′ V

) ∫ t

−∞
dt′

∑

n′′

exp[
i

h̄
(h̄ω′ + h̄ω + En′ − En) t

′ ]

[
< n′l′m′ | ǫ̂α′(k′) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | ǫ̂α(k) . p̂ | nlm >

( En − En′′ + h̄ ω )

+
< n′l′m′ | ǫ̂α(k) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | ǫ̂α′(k′) . p̂ | nlm >

( En − En′′ − h̄ ω′ )

]
(1000)

as long as the denominators are non-vanishing.

The coefficients C
(1)
n′ (t) and C

(2)
n′ (t) have the same type of time-dependence.

The remaining integration over time yields

( − i

h̄

) ∫ t

−∞
dt′ exp

[
i

h̄
(h̄ω′ + En′ − En − h̄ω − ih̄η) t′

]

= − exp[ i
h̄

(h̄ω′ + En′ − En − h̄ω − ih̄η) t ]

(h̄ω′ + En′ − En − h̄ω − ih̄η)
(1001)

The transition rate is given by

1

τ
=

∂

∂t

( ∣∣∣∣ C
(1)
n′ (t) + C

(2)
n′ (t)

∣∣∣∣
2 )

(1002)

but the time-dependence of the squared modulus is contained in the common
factor

∣∣∣∣
exp[ i

h̄
(h̄ω′ + En′ − En − h̄ω − ih̄η) t ]

(h̄ω′ + En′ − En − h̄ω − ih̄η)

∣∣∣∣
2

=

exp

[
2 η t

]

(h̄ω′ + En′ − En − h̄ω)2 + h̄2η2

(1003)
Therefore, one finds the transition rate is given by the expression

1

τ
=

2 η exp

[
2 η t

]

(h̄ω′ + En′ − En − h̄ω)2 + h̄2η2

(
e2

m c2

)2 (
2 π h̄ c2√
ωk ωk′ V

)2

M2 (1004)
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where the matrix elements are given by

M =

[
ǫ̂α(k) . ǫ̂α′(k′) < n′l′m′ | nlm >

+
1

m

∑

n′′

< n′l′m′ | ǫ̂α′(k′) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | ǫ̂α(k) . p̂ | nlm >

( En − En′′ + h̄ ω )

+
1

m

∑

n′′

< n′l′m′ | ǫ̂α(k) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | ǫ̂α′(k′) . p̂ | nlm >

( En − En′′ − h̄ ω′ )

]

(1005)

On taking the limit η → 0, the first factor in the decay rate reduces to an
energy conserving delta function. Therefore, one obtains the Fermi-Golden rule
expression

1

τ
=

2 π

h̄

(
e2

m c2

)2 (
2 π h̄ c2√
ωk ωk′ V

)2

M2 δ(h̄ωk′ + En′ − En − h̄ωk) (1006)

The magnitudes of the final state photon quantum numbers (k′) must be inte-
grated over, since these are not measured. This integration imparts a physical
meaning to the expression for the rate which contains the Dirac delta function.
We shall assume that the direction of the scattered photon is to be measured
and that the photon is absorbed by a detector which subtends a solid angle dΩ′

to the atom. Therefore, the scattering rate is given by

1

τdΩ′

=
2 π

h̄

(
e2

m c2

)2
V

( 2 π )3
dΩ′

∫ ∞

0

dk′ k′2
(

2 π h̄ c2√
ωk ωk′ V

)2

|M |2 δ(h̄ωk′+En′−En−h̄ωk)
(1007)

Since h̄ ωk′ = h̄ c k′, the integration over the delta function can be performed,
yielding

1

τdΩ′

=
2 π

h̄

(
e2

m c2

)2
V dΩ′

( 2 π )3
ω′2

h̄ c3

(
2 π h̄ c2√
ω ω′ V

)2

| M |2 (1008)

The scattering cross-section is defined as the transition rate divided by the
photon flux. The photon flux is found by noting that it has been assumed that
there is one photon per volume V so the photon density is 1

V
and the speed of

light is c. Hence, the photon flux is given by c
V

. Therefore, the cross-section is
determined by the Kramers-Heisenberg formula

(
dσ

dΩ′

)
=

(
e2

m c2

)2 (
ω′

ω

)
| M |2 (1009)

The magnitude of the scattering rate is determined by the quantity re which
has the dimensions of length

re =

(
e2

m c2

)
(1010)
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This quantity is often called the classical radius of the electron. The quantity
re can be expressed as

re =

(
e2

m c2

)
=

(
e2

h̄ c

) (
h̄

m c

)
≈ 2.82 × 10−15 m (1011)

11.2.1 Rayleigh Scattering

Rayleigh scattering corresponds to the limit in which the light is elastically
scattered. Hence, one has

ω = ω′ (1012)

In the case of elastic scattering, all the terms in the Kramers-Heisenberg formula
are equally important. That all terms have a similar magnitude can be seen by
re-writing the first term ǫ̂α(k) . ǫ̂α′(k′) in a way which is similar to the second.
The scalar product of the polarization vectors can be expressed as

ǫ̂α(k) . ǫ̂α′(k′) =
∑

i,j

ǫ̂α(k)i δi,j ǫ̂α′(k′)j (1013)

but one can re-write the Kronecker delta function in terms of the commutation
relation

[ xi , p̂j ] = i h̄ δi,j (1014)

Thus, one can express the scalar product as a commutator

ǫ̂α(k) . ǫ̂α′(k′) =
1

i h̄

∑

i,j

ǫ̂α(k)i [ xi , p̂j ] ǫ̂α′(k′)j

=
1

i h̄
[ ǫ̂α(k) . r , p̂ . ǫ̂α′(k′) ] (1015)

Since, in the dipole approximation, the diamagnetic contribution to the matrix
elements M is proportional to the overlap integral

< n′l′m′ | nlm > (1016)

the initial and final states must be identical if this is non-zero. Hence, the
result is equivalent to the expectation value in the state | nlm > . On replacing
the matrix elements by the expectation value and then insert a complete set of
electronic states, one finds

< n′l′m′ | nlm > ǫ̂α(k) . ǫ̂α′(k′)

=
1

i h̄

∑

n′′l′′m′′

[
< n′l′m′ | r . ǫ̂α(k) | n′′l′′m′′ > < n′′l′′m′′ | ǫα′(k′) . p̂ | nlm >

− < n′l′m′ | ǫ̂α′(k′) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | r . ǫ̂α(k) | nlm >

]
(1017)
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The matrix elements of r can be expressed in terms of the matrix elements of p̂
via

< n′l′m′ | p̂ | n′′l′′m′′ > =
1

2 i h̄
< n′l′m′ | [ r , p̂2 ] | n′′l′′m′′ >

=
m

i h̄
< n′l′m′ | [ r , Ĥ0 ] | n′′l′′m′′ >

=
m

i h̄
( En′′l′′m′′ − En′l′m′ ) < n′l′m′ | r | n′′l′′m′′ >

(1018)

Therefore, one finds

< n′l′m′ | r | n′′l′′m′′ > =
i

m ωn′′,n′

< n′l′m′ | p̂ | n′′l′′m′′ > (1019)

where
En′′l′′m′′ − En′l′m′ = h̄ ωn′′n′ (1020)

Thus, the elastic scattering term in the Kramers-Heisenberg formula is given by

δnlm,n′l′m′ ǫ̂α(k) . ǫ̂α′(k′)

=
1

m

∑

n′′l′′m′′

< n′l′m′ | p̂ . ǫ̂α(k) | n′′l′′m′′ > < n′′l′′m′′ | p̂ . ǫ̂α′(k′) | nlm >

h̄ ωn′′n′

− 1

m

∑

n′′l′′m′′

< n′l′m′ | p̂ . ǫ̂α′(k′) | n′′l′′m′′ > < n′′l′′m′′ | p̂ . ǫ̂α(k) | nlm >

h̄ ωnn′′

(1021)

but since for elastic scattering Enlm = En′l′m′ , one has

δnlm,n′l′m′ ǫ̂α(k) . ǫ̂α′(k′)

=
1

m

∑

n′′l′′m′′

< n′l′m′ | p̂ . ǫ̂α(k) | n′′l′′m′′ > < n′′l′′m′′ | p̂ . ǫ̂α′(k′) | nlm >

En′′ − En

+
1

m

∑

n′′l′′m′′

< n′l′m′ | p̂ . ǫ̂α′(k′) | n′′l′′m′′ > < n′′l′′m′′ | p̂ . ǫ̂α(k) | nlm >

En′′ − En

(1022)

On substituting this back into the expression for the matrix elements M , one
obtains

M =

[
1

m

∑

n′′l′′m′′

< n′l′m′ | p̂ . ǫ̂α(k) | n′′l′′m′′ > < n′′l′′m′′ | p̂ . ǫ̂α′(k′) | nlm >

En′′ − En

+
1

m

∑

n′′l′′m′′

< n′l′m′ | p̂ . ǫ̂α′(k′) | n′′l′′m′′ > < n′′l′′m′′ | p̂ . ǫ̂α(k) | nlm >

En′′ − En
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+
1

m

∑

n′l′′m′′

< n′l′m′ | ǫ̂α′(k′) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | p̂ . ǫ̂α(k) | nlm >

( En − En′′ + h̄ ω )

+
1

m

∑

n′′l′′m′′

< n′l′m′ | ǫ̂α(k) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | p̂ . ǫ̂α′(k′) | nlm >

( En − En′′ − h̄ ω )

]

(1023)

which simplifies to

M =
ω

m h̄

∑

n′′l′′m′′

[
< n′l′m′ | ǫ̂α′(k′) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | p̂ . ǫ̂α(k) | nlm >

ωn′′n ( ωnn′′ + ω )

−
< n′l′m′ | ǫ̂α(k) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | p̂ . ǫ̂α′(k′) | nlm >

ωn′′n ( ωnn′′ − ω )

]

(1024)

In the limit of small photon frequencies compared with the electronic energies,
one can expand the denominators of the matrix element as

1

ωnn′′ ( ωnn′′ ± ω )
=

1

ω2
nn′′

∓ ω

ω3
nn′′

+ . . . (1025)

When this low-frequency expansion is substituted into the matrix elements, the
leading term vanishes. This can be seen since the leading term is proportional
to

∑

n′′

1

ω2
nn′′

[
< n′l′m′ | ǫ̂α′(k′) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | p̂ . ǫ̂α(k) | nlm >

− < n′l′m′ | ǫ̂α(k) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | p̂ . ǫ̂α′(k′) | nlm >

]

(1026)

which can be expressed as

m2
∑

n′′

[
< n′l′m′ | ǫ̂α′(k′) . r | n′′l′′m′′ > < n′′l′′m′′ | r . ǫ̂α(k) | nlm >

− < n′l′m′ | ǫ̂α(k) . r | n′′l′′m′′ > < n′′l′′m′′ | r . ǫ̂α′(k′) | nlm >

]

(1027)

or, on using the completeness relation, one finds the expectation value of the
commutator is given by

m2 < n′l′m′ | [ ǫ̂α′(k′) . r , r . ǫ̂α(k) ] | nlm > = 0 (1028)
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Thus, the leading term of the low-frequency expansion vanishes. Therefore, the
scattering rate is expressed as

(
dσ

dΩ′

)
=

(
re
m h̄

)2

ω4

∣∣∣∣
∑

n′′l′′m′′

(
1

ωnn′′

)3

×
[
< n′l′m′ | ǫ̂α′(k′) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | p̂ . ǫ̂α(k) | nlm >

+ < n′l′m′ | ǫ̂α(k) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | p̂ . ǫ̂α′(k′) | nlm >

] ∣∣∣∣
2

(1029)

Finally, the scattering rate can be expressed in terms of the dipole matrix ele-
ments as

(
dσ

dΩ′

)
=

(
re m

h̄

)2

ω4

∣∣∣∣
∑

n′′l′′m′′

(
1

ωnn′′

)3

×
[
< n′l′m′ | ǫ̂α′(k′) . r | n′′l′′m′′ > < n′′l′′m′′ | r . ǫ̂α(k) | nlm >

+ < n′l′m′ | ǫ̂α(k) . r | n′′l′′m′′ > < n′′l′′m′′ | r . ǫ̂α′(k′) | nlm >

] ∣∣∣∣
2

(1030)

Hence, at long-wavelengths, the scattering cross-section varies as ω4 as expected
from Rayleigh’s law. Since the typical electronic frequency ωnn′′ is in the ultra-
violet spectrum, then

ωnn′ ≫ ω (1031)

for all frequencies in the visible optical spectrum. This leads to the phenomena
of blue skies in the day and red sunsets at dusk.

11.2.2 Thomson Scattering

Thomson scattering occurs for photons with sufficiently high energies

ω ≫ ωnn′′ (1032)

so that the photon energy is greater than the atomic binding-energy. In this
case, the second and third terms in the Kramers-Heisenberg formula can be
neglected. This is because

ω ∼ ω′ ≫ 1

m
< n′l′m′ | ǫ̂α′(k′) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | p̂ . ǫ̂α(k) | nlm >

(1033)
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Therefore, the scattering predominantly occurs elastically and the scattering
cross-section is given by

(
dσ

dΩ′

)
= r2e

∣∣∣∣ ǫ̂α(k) . ǫ̂α′(k′)

∣∣∣∣
2

(1034)

which is independent of ω. The above result is dependent on the scattering
angle via the polarization vectors.

In the investigation of the angular dependence of Thomson scattering, it is
convenient to introduce a coordinate system which is defined by the polarization
vectors and direction of propagation of the incident photon and its polarization
ǫ̂1(k). The coordinate system is composed of the three orthogonal unit vec-

tors (ǫ̂1(k), ǫ̂2(k), k̂). Thus the direction of the polarization vector ǫ̂1(k) defines
the x-direction. In this coordinate system, the scattered photon (k′, α′) is in
the direction k′ with polar coordinates (θk′ , ϕk′). The polarization of the final
photons ǫ̂α(k′) must be transverse to k′. Two polarization vectors are defined
according to

ǫ̂1(k
′) = ( cos θk′ cosϕk′ , cos θk′ sinϕk′ , − sin θk′ ) (1035)

which lies in the plane of k and k′ and

ǫ̂2(k
′) = ( − sinϕk′ , cosϕk′ , 0 ) (1036)

which lies in the plane perpendicular to k. In terms of the chosen polarization

k

e1(k)

e2(k)

k'

φk'

θk'

e1(k')

e2(k')

Figure 32: The coordinate system and polarization vectors used to describe
Thomson scattering.

vectors, the scattering cross-section for incident radiation that is polarized along

176



the x-direction takes on the form
(
dσ

dΩ′

)

x−pol
= r2e

{
cos2 θk′ cos2 ϕk′ for α′ = 1
sin2 ϕk′ for α′ = 2

(1037)

if the polarizations of the final photon are measured.

If the incident beam has its polarization along the x-direction, and the de-
tector is not sensitive to the polarization, then the final polarization must be
summed over. In this case of a polarized beam and a polarization insensitive
detector, the cross-section is given by

(
dσ

dΩ′

)

x−pol
= r2e

(
cos2 θk′ cos2 ϕk′ + sin2 ϕk′

)
(1038)

where the polarizations of the final state photon have been summed over.

If the incident beam of photons is unpolarized, then ϕ is undefined since
the azimuthal direction of the scattered photon is defined with respect to the
assumed polarization ǫ̂1(k). In the case of an unpolarized incident beam the
expression should be integrated over ϕ and divided by 2π. The scattering rate
is given by

(
dσ

dΩ′

)

unpol
=

r2e
2

{
cos2 θk′ for α′ = 1
1 for α′ = 2

(1039)

if the polarizations of the final state photons are measured. This result is iden-
tical to that obtained by assuming that the initial beam is composed of one half
of the number photons polarized along the x-direction and the other half of the
number of photons polarized along the y-direction. That is
(
dσ

dΩ′

)

unpol
= r2e

{
1
2 cos2 θk′ ( cos2 ϕk′ + sin2 ϕk′ ) for α′ = 1

1
2 ( sin2 ϕk′ + cos2 ϕk′ ) for α′ = 2

(1040)

The cross-section for unpolarized photons with a polarization insensitive detec-
tor is given by (

dσ

dΩ′

)

unpol
=

r2e
2

(
1 + cos2 θk′

)
(1041)

where the final polarizations have been summed over.

The total cross-section σ is obtained by integrating over all directions. The
total Thomson scattering cross-section is independent of whether the initial
beam was polarized or unpolarized. The final result is

σ =
8 π

3
r2e (1042)

which has a magnitude of 6.65 × 10−29 m2. More massive charged particles,
such as protons, can also produce Thomson scattering but the cross-sections for
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these processes are smaller by factors of (m
M

)2. The derivation of the Thomson
scattering cross-section breaks down for photons which have energies of the
order of the electron’s rest energy

h̄ ω ∼ me c
2 (1043)

For photons with these high-energies, one must describe the scattering process
relativistically. In this energy region, Compton scattering dominates.

Classical Interpretation

The classical counter-parts of Rayleigh and Thomson scattering can be de-
scribed by a two-step process. In the first step, the incident classical electro-
magnetic field causes an electron to undergo forced oscillations. In the second
step, the oscillating electrons emit electromagnetic radiation.

In the first process, an electron bound harmonically to the atom which re-
sponds to an electromagnetic field E0 exp[ i ω t ] can be described by the
equation of motion

r̈ + ω2
0 r =

q

m
E0 ℜe exp

[
i ω t

]
(1044)

where ω0 is the frequency of the electron’s natural motion. In the steady state,
one finds

r =
q
m
E0

ω2
0 − ω2

ℜe exp

[
i ω t

]
(1045)

The acceleration of the charged particle can be described by

r̈ = −
q
m
ω2 E0

ω2
0 − ω2

ℜe exp

[
i ω t

]
(1046)

The accelerating charged particle radiates electromagnetic energy. The emitted
power is given by the Larmor formula

P (ω) =
2 q2 r2 ω4

3 c3

=
2 q4 E2

0

3 m2 c3
ω4

( ω2
0 − ω2 )2

(1047)

while the incident energy flux is given by

c

4 π
E2

0 (1048)

Hence, the scattering cross-section is described by

σ =
8 π

3
r2e

ω4

( ω2
0 − ω2 )2

(1049)
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This formula has the correct frequency dependence in the limit ω ≪ ω0 in which
case the classical cross-section varies as ω4, as expected for Rayleigh scattering.
On the other hand, in the limit ω ≫ ω0 the cross-section becomes frequency
independent, as is expected for Thomson scattering.

11.2.3 Raman Scattering

For inelastic scattering, one has h̄ ω 6= h̄ ω′, therefore, the condition of con-
servation of energy requires that

Enlm + h̄ ω = En′l′m′ + h̄ ω′ (1050)

Since it is most probable that the initial electron is in the ground state, one has

En′l′m′ > Enlm (1051)

which leads to the inequality

h̄ ω > h̄ ω′ (1052)

Hence, the final photon has less energy than the initial photon. That is, the

ω'

I(
ω')

ωω−ωn',n ω+ωn',

Stokes

n → n'

anti-Stokes 

    n' → n

Figure 33: The schematic frequency dependence of the observed intensity ex-
pected in a Raman scattering experiment. The ratio of intensities of the Stokes
and anti-Stokes lines provides a relative measure of the initial occupation of the
low-energy state n and the higher-energy excited state n′.

electromagnetic field has lost energy and left the electron in an excited state.
This inelastic process describes the Stoke’s line. On the other hand, if the
electron is initially in an excited state, then it is possible that the electron loses
energy and makes a transition to the ground state. In this case,

En′l′m′ < Enlm (1053)
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so the final photon is more energetic

h̄ ω < h̄ ω′ (1054)

This process results in the anti-Stokes line.

11.2.4 Radiation Damping and Resonance Fluorescence

In the analysis of photon scattering, it has been assumed that the energy de-
nominators ( En − En′′ + h̄ ω ) do not vanish. If the energy denominator
vanishes, the Kramers-Heisenberg formula becomes singular, however, the phys-
ically observed scattering cross-section may become large but does not diverge.
This is the phenomenon of resonance-fluorescence. Using the classical model,
one can describe the scattering cross-section, if damping is introduced to rep-
resent the lifetime of the electronic states. That is, the dynamics of the bound
electron is modelled by a damped harmonic oscillator

r̈ + γ ṙ + ω2
0 r =

q

m
E0 ℜe exp

[
i ω t

]
(1055)

which has the solution

r =
q

m
E0 ℜe 1

ω2
0 + i γ ω − ω2

exp

[
i ω t

]
(1056)

since γ is related to the decay rate and is of the order of 108 sec−1, it is usually
negligible compared with the frequency of light which is estimated as ω ∼ 1015

sec−1. Following our previous arguments, one finds that the scattering cross-
section is given by

σ(ω) =
8 π

3

(
q2

m c2

)2
ω4

( ω2 − ω2
0 )2 + γ2 ω2

(1057)

which no longer diverges when the resonance condition is satisfied, because of
the damping of the electronic states.

The lifetime of a quantum mechanical state which at t = 0 is represented
by | ψn(0) > calculated to second-order in the interaction ĤI is given by the
Fermi-Golden rule expression. The rate can be expresses as the limit η → 0 by

1

τn
= − 2

h̄
ℑm

∑

n′

| < ψn′ | ĤI | ψn > |2
En − En′ + i η

(1058)

whereas the energy-shift found in second-order (Rayleigh-Schrödinger) pertur-
bation theory is also given by the limit η → 0 of

∆En = ℜe
∑

n

| < ψn′ | ĤI | ψn > |2
En − En′ + i η

(1059)
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so
En = E(0)

n + ∆En (1060)

Hence, due to the form of the expressions for the shift and the lifetime as the
real and imaginary parts of a complex function, it is possible to consider an
unstable state as having a complex energy54 given by

En − i Γn ≈ E(0)
n + ∆En − i

h̄

2 τn
(1061)

That is, the lifetime can be considered as giving the state an energy-width Γn.
This is the natural width of the electronic state. The factor of two in the width
can be understood by considering the time-dependence of the state | ψn(t) >
which is given by

| ψn(t) > = exp

[
− i

h̄
( En − i Γn ) t

]
| ψn(0) > (1062)

Hence, the probability Pn(t) that the state has not decayed at time t is given
by

Pn(t) = | < ψn(0) | ψn(t) > |2

= | < ψn(0) | exp

[
− i

h̄
( En − i Γn ) t

]
| ψn(0) > |2

= exp

[
− 2

h̄
Γn t

]
(1063)

due to the normalization of the initial state. This time-dependence of Pn(t) is
interpreted in terms of the exponential decay of the probability for finding the
initial state

Pn(t) = Pn(0) exp

[
− t

τn

]
(1064)

This leads to the identification of the relation between the energy-width and
the lifetime

Γn =
h̄

2 τn
(1065)

Hence, the lifetime τn of an unstable or metastable state can be incorporated
by introducing an imaginary part Γn to the energy.

Therefore, for the case of resonant scattering, one should replace the energies
by complex numbers such that the real part represents the state’s energy and
the imaginary part describes half the state’s decay rate. In the case of resonant
scattering, the Kramers-Heisenberg formula is modified55 to

(
dσ

dΩ′

)
=

(
e2

m c2

)2 (
ω′

ω

)
| M |2 (1066)

54That is, the perturbation produces a complex shift of the energy-shift which related to
the self-energy Σn(E) which is to be discussed later

55P. A. M. Dirac, Proc. Roy. Soc. A 114, 710 (1927).
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where the matrix elements are given by

M =

[
ǫ̂α(k) . ǫ̂α′(k′) < n′l′m′ | nlm >

+
1

m

∑

n′′l′′m′′

< n′l′m′ | ǫ̂α′(k′) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | ǫ̂α(k) . p̂ | nlm >

( En − En′′ − i Γn′′ + h̄ ω )

+
1

m

∑

n′′l′′m′′

< n′l′m′ | ǫ̂α(k) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | ǫ̂α′(k′) . p̂ | nlm >

( En − En′′ − i Γn′′ − h̄ ω′ )

]

(1067)

Since close to resonance, the resonant denominator is given by Γ ∼ h̄ c
a

( e
2

h̄ c
)4

whereas the numerator is of the order of e2

a
. Hence, on-resonance, the matrix

elements can be of the order ( e
2

h̄ c
)−3 larger than the non-resonant matrix ele-

ments. Therefore, on resonance, the non-resonant terms may be neglected. In
the following, it shall be assumed that the resonant state is non-degenerate

(
dσ

dΩ′

)
=

(
e2

m2 c2

)2 (
ω′

ω

) | < n′l′m′ | ǫ̂α′(k′) . p̂ | n′′l′′m′′ > < n′′l′′m′′ | ǫ̂α(k) . p̂ | nlm > |2
( En − En′′ + h̄ ω )2 + Γ2

n′′

(1068)
This expression can be re-expressed in terms of the product of two factors

(
dσ

dΩ′

)
=

(
e2 2 π h̄

m2 ω V

) | < nlm | ǫ̂α(k) . p̂ | n′′l′′m′′ > |2
( En − En′′ + h̄ ω )2 + Γ2

n′′

V

c

× 2 π

h̄

(
e2 2 π h̄

m2 ω′ V

)
| < n′′l′′m′′ | ǫ̂α′(k′) . p̂ | n′l′m′ > |2 V ω′2

( 2 π )3 h̄ c3

(1069)

which is the probability for absorption from the ground state to the resonant
state | n′′l′′m′′ > (divided by the incident flux) times the probability for its
decay via emission. On resonance, it appears that the process corresponds to
two sequential processes, first absorption and secondly emission.

For energies slightly off-resonance, the resonant scattering is expected to in-
terfere with the non-resonant scattering process. Likewise, if the resonant state
is degenerate, the sum over the degeneracy must be performed before the matrix
elements are squared leading to constructive interference.

The difference between a resonant process and two step process, is deter-
mined by the lifetime of the intermediate state | n′l′m′ > compared with the
frequency width of the photon beam. The frequency width of the photon beam
may be limited by the monochromator, or by the time-scale of the experiment
if it involves a pulsed light source. If the lifetime of the intermediate state is
sufficiently long compared with the time scale of experiment, it may be possi-
ble to observe the decay long after the incident light has been switched off. In

182



this case, the resonance can be considered to be composed of two independent
processes56. Furthermore, it may be possible to perform further experiments
on the surviving intermediate state. In the opposite case, where the lifetime
of the intermediate state is shorter than the time-scale of the experiment, the
intermediate state will have decayed before the experiment has terminated.

11.2.5 Natural Line-Widths

The interaction representation will be used to calculate the natural width for
the absorption of light (k, α), by introducing the lifetimes of the initial and final
state. Strictly speaking, one should not take the exponential decay of a proba-
bility Pn(t) of finding an electron in state ψn too literally. If one considers the
approximate exponential decay as being rigorous, this implies that the Hamil-
tonian should be non-Hermitean which is strictly forbidden. One should think
of the decaying wave function as a wave packet or linear superposition of exact
energy eigenstates (with energies denoted by E). The Fourier transform of the
time-dependent wave function should provide the energy-distribution ρn(E) of
the exact energy eigenstates in the wave packet | ψn(t) >

ρn(E) =
1

2 π h̄

∫ ∞

−∞
dt exp

[
+

i

h̄
E t

]
< ψn(0) | ψn(t) >(1070)

On assuming the approximate form of a decaying wave packet

< ψn(0) | ψn(t) > = exp

[
− i

h̄
En t − | t |

2 τn

]
(1071)

where the decay includes transitions to all possible final states, one finds

ρn(E) =
1

2 π i

(
1

E − En − i h̄
2 τn

− 1

E − En + i h̄
2 τn

)

=
1

π

h̄
2 τn

( E − En )2 + ( h̄
2 τn

)2
(1072)

This can only be an approximate form of the energy-distribution since the en-
ergy must be bounded from below. The existence of a lower-bound to en-
ergy distribution implies that the width of the electronic energy level has to
be energy-dependent h̄

2 τn
= Γn as this must become zero below a threshold

energy. However, it should be noted that the width of the energy-distribution
will determine the approximate exponential decay. Since the perturbations in-
troduce an energy-dependent width to the wave packet, causality requires that
the energy-shift ∆En should also be energy-dependent. Hence, the effects of
the perturbation (such as the energy-shift and lifetime) should be described in

56V. Weisskopf, Ann. der Physik, 9, 23 (1931).
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terms of a self-energy Σn(E)

Σn(E) = ℜe Σn(E) + i ℑm Σn(E)

≈ ∆En − i Γn (1073)

The energy-dependent self-energy appears most naturally if one uses Brillouin-
Wigner perturbation theory to calculate the correction to an approximate energy
En. From second-order Brillouin-Wigner perturbation theory, one finds that the
energy-dependent self-energy, when evaluated just above the real E axis, is given
by

Σn(E + iη) =
∑

n′

| < n′ | ĤI | n > |2
E + i η − En′

(1074)

This complex self-energy has a real and imaginary part. The imaginary part
can be thought of as occurring via amplification of the infinitesimal imaginary
term i η in the denominator, and can be seen to be non-zero when the energy
E of the component in the wave packet falls in the region when the spectral
density of the approximate En′ is finite. Hence, since the En′ are bounded from
below, then so is the energy-distribution ρn(E) since

ρn(E) = − 1

π

ℑm Σn(E + iη)

( E − En − ℜe Σn(E) )2 + ( ℑm Σn(E + iη) )2
(1075)

The real part of the self-energy must also be energy-dependent, since it is related
to the imaginary part via the Kramer’s-Kronig relations

ℜe Σn(E) = − 1

π

∫ ∞

−∞
dz

ℑm Σn(z + iη)

E − z

ℑm Σn(E + iη) = +
Pr
π

∫ ∞

−∞
dz

ℜe Σn(z)

E − z
(1076)

where the Principal Part of an integral with a simple pole is defined as

Pr
∫ ∞

−∞
dz

f(z)

z
= lim

ǫ→0

( ∫ ∞

+ǫ

dz
f(z)

z
+

∫ −ǫ

−∞
dz

f(z)

z

)
(1077)

Hence, the real part of the self-energy is also energy-dependent. The Kramers-
Kronig relation is an expression of causality.

Since the electronic states in the expression for the Fermi-Golden rule decay
rate

1

τ nl→n′l′
=

2 π

h̄
| < n′l′m′ | ĤI | nlm > |2 δ( En′l′ − Enl − h̄ ω ) (1078)

are to be interpreted as wave packets with a distribution of energies, the factor
expressing conservation of energy should be expressed in terms of the energy

184



conservation for the components of the wave packets. Hence, the decay rate
should be written as the convolution

1

τ nl→n′l′
=

2 π

h̄
| < n′l′m′ | ĤI | nlm > |2

∫ ∞

−∞
dE′ ρn′l′(E

′)

∫ ∞

−∞
dE ρnl(E) δ( E′ − E − h̄ ω )

=
2 π

h̄
| < n′l′m′ | ĤI | nlm > |2

∫ ∞

−∞
dE ρn′l′( E + h̄ ω ) ρnl(E) (1079)

We shall use the approximation for the energy distributions suggested by eqn(1072).
In this case, the convolution is evaluated by contour integration as

1

τ nl→n′l′
=

2

h̄
| < n′l′m′ | ĤI | nlm > |2

h̄
2 τn

+ h̄
2 τn′l

( h̄ ω + Enl − En′l′ )2 + ( h̄
2 τnl

+ h̄
2 τn′l′

)2

(1080)

since only the terms with poles on the opposite sides of the real-axis yield
non-zero contributions. From this, one can show that the optical absorption
cross-section is given by

σabsorb(ω) =
4 π

3

(
e2

h̄ c

) ∑

n′l′m′

| < n′l′m′ | r | nlm > |2
ωn′l′,nl ( 1

2 τn′l′
+ 1

2 τnl
)

( ωn′l′,nl − ω )2 + ( 1
2 τn′l′

+ 1
2 τnl

)2

(1081)
which was first derived by Weisskopf and Wigner57. Hence, the natural width
is given by the average of the decay rates for the initial and final electronic
states. This leads to the conclusion that even weak lines can be broad, if the
final electronic state has a short lifetime.

11.3 Renormalization and Regularization

Quantum Electrodynamics treats the interactions between charged particles and
the electromagnetic field, and often contains infinities. The zero-point energy of
the electromagnetic field is one such infinity. In most cases, these infinities can
be ignored since they are not measurable, since the infinities occur as modifica-
tions caused by the introduction of interactions between the charged particles
of a hypothetical system with an electromagnetic field. That is, the infinities
occur in the form of a renormalization of the quantities of the non-interacting
theory. These infinite renormalizations do not lead to the rejection of the theory
of Quantum Electrodynamics since the quantities of the non-interacting system
are not measurable. To be sure, the infinities occur in relations between hypo-
thetical quantities and physically measurable quantities, and so these infinities
can be ignored since the hypothetical quantities are undefined. However, it is
possible to use the theory to eliminate the unmeasurable quantities, thereby
yielding relations between physically measurable quantities to other physically

57V. F. Weisskopf and E. Wigner, Z. Physik, 63, 54 (1930).
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measurable quantities. In Quantum Electrodynamics, the infinities cancel in
equations which only contain physical measurable quantities. This fortunate
circumstance makes the theory of Quantum Electrodynamics renormalizable.

First, it shall be shown how the infinite zero-point energy of the electro-
magnetic field can lead to a (finite) physically measurable force between its
containing walls.

11.3.1 The Casimir Effect

The zero-point energy of the electromagnetic field can lead to measurable ef-
fects. In general relativity, the total energy including the zero-point energy
of the electromagnetic radiation is the source for the gravitational field. The
Casimir effect58 shows that the zero-point energy of the electromagnetic radi-
ation produces a force on the walls of the cavity. We shall consider a cubic
volume V = L3 which is enclosed by conducting walls that acts as a cavity
for the electromagnetic radiation. This volume is divided into two by a metallic
partition, which is located at a distance d from one side of the cavity. We shall

dL - d

Figure 34: The geometry of the partitioned electromagnetic cavity used to con-
sider the Casimir effect.

evaluate the total energy of this configuration and then deduce the form of the
interaction between the partition and the walls of the cavity.

We shall consider the total energy due to the zero-point fluctuations in the
container. Since the zero-point energy is divergent due to the presence of arbi-
trarily large frequencies, we shall introduce a convergence factor. The introduc-
tion of a convergence factor to remove infinities is the process of regularization.
The introduction of the convergence factor can be motivated by the observation
that, in matter, electromagnetic radiation becomes exponentially damped at

58H. B. G. Casimir, Physica 19, 846 (1953).
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large frequencies. Hence, one can write

E =
1

2

∑

k,α

h̄ ωk,α exp

[
− λ

ωk,α

c

]
(1082)

and then take the limit λ→ 0.

The presence of the conducting walls introduces boundary conditions such
that the EM field is zero at every boundary. The boundary conditions restrict
the allowed values of k so that the components satisfy

ki L = π ni (1083)

for i = x, y and ni are positive integers. The boundary condition for the re-
maining two boundaries leads to the restriction

kz d = π nz (1084)

The energy of the radiation in one part of the partition can be expressed as

Ed = h̄ c
L2

π2

∫ ∞

0

dkx

∫ ∞

0

dky

∞∑

nz=1

√

k2
x + k2

y +

(
nz π

d

)2

exp

[
− λ

√

k2
x + k2

y +

(
nz π

d

)2 ]

(1085)
where the two polarizations have been summed over. The integration has cylin-
drical symmetry but only extends over the quadrant with positive kx and ky,
therefore, it shall be re-written as

Ed = h̄ c
2 L2

4 π

∫ ∞

0

dk k
∞∑

nz=1

√

k2 +

(
nz π

d

)2

exp

[
− λ

√

k2 +

(
nz π

d

)2 ]

(1086)
or, on changing variable to the dimensionless κ = k2 ( d

nz π
)2

Ed = h̄ c
L2

4 π

∞∑

nz=1

(
nz π

d

)3 ∫ ∞

0

dκ
√
κ + 1 exp

[
− nz π λ

d

√
κ + 1

]

(1087)
The factor of n3

z can be expressed as a third-order derivative of the exponential
factor w.r.t. λ

Ed = − h̄ c
L2

4 π

∞∑

nz=1

∫ ∞

0

dκ
1

κ + 1

∂3

∂λ3

(
exp

[
− nz π λ

d

√
κ + 1

] )

(1088)
The summation over nz can be performed, leading to

Ed = − h̄ c
L2

4 π

∫ ∞

0

dκ
1

κ + 1

∂3

∂λ3

(
exp[ − π λ

d

√
κ + 1 ]

1 − exp[ − π λ
d

√
κ + 1 ]

)

= − h̄ c
L2

4 π

∫ ∞

0

dκ
1

κ + 1

∂3

∂λ3

(
1

exp[ π λ
d

√
κ + 1 ] − 1

)
(1089)
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Let t =
√
κ+ 1 so

Ed = − h̄ c
2 L2

4 π

∫ ∞

1

dt

t

∂3

∂λ3

(
1

exp[ π λ
d

t ] − 1

)
(1090)

The factor of t−1 can be eliminated by performing one of the differentials with
respect to λ.

Ed =
h̄ c L2

2 d

∫ ∞

1

dt
∂2

∂λ2

(
exp[ π λ

d
t ]

( exp[ π λ
d

t ] − 1 )2

)
(1091)

We shall set

s = exp[
π λ t

d
] − 1 (1092)

therefore

Ed =
h̄ c L2

2 d

∂2

∂λ2

(
d

π λ

)∫ ∞

s0

ds

s2
(1093)

where the lower limit of integration depends on λ and is given by

s0 = exp[
π λ

d
] − 1 (1094)

The integration can be performed trivially, yielding

Ed =
h̄ c L2

2 d

∂2

∂λ2

(
d

π λ s0

)

=
h̄ c L2

2 d

∂2

∂λ2

( d
π λ

exp[ π λ
d

] − 1

)

=
h̄ c L2

2 d

∂2

∂λ2

[ (
d

π λ

)2 ( π λ
d

exp[ π λ
d

] − 1

) ]
(1095)

The last factor in the above expression can be expanded as

x

exp[x] − 1
=

∞∑

n=0

Bn
xn

n!
(1096)

where Bn are the Bernoulli numbers, which are given by B0 = 1, B1 =
− 1

2 , B2 = 1
6 , B3 = 0, B4 = − 1

30 , etc. Therefore, the energy of the
electromagnetic cavity at zero temperature, is finite for a finite value of the
cut-off λ but diverges as λ−4 when λ → 0. The zero point energy of the cavity
can be expressed as

Ed =
h̄ c L2

2

[
π2

d3

∑

n=0

Bn(n− 2)(n− 3)

n!

(
π λ

d

)n−4 ]
(1097)
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where the n = 0 term diverges as λ−4 in the limit as λ→ 0 and is proportional
to the volume of the cavity d L2. The term with n = 1 also diverges, but
diverges as λ−3 and has the form of a surface energy since it is proportional to
L2. The terms with n = 2 and n = 3 are identically equal to zero. The term
with n = 4 remains finite in the limit λ → 0 and all the higher-order terms
vanish in this limit. Explicitly, one has

Ed =
h̄ c L2

2 d

[
6 B0 d

2

π2 λ4
+

2 B1 d

π λ3
+

2 B4 π
2

4! d2
+ O(λ)

]
(1098)

The first term in the energy is proportional to L2d, which is the volume of the
cavity and the second term is proportional to L2 the surface area of the walls.
The third term is independent of the cut-off and the higher order terms vanish
in the limit λ→ 0.

The Casimir force is the force between two planes, which originates from
the energy of the field59. This energy can be separated out into a volume
part and parts due to the creation of the surfaces and an interaction energy
between the surfaces. In order to eliminate both the volume dependence of the
energy and the surface energies, we are considering two configurations of the
partitions in the cavity. In one configuration the plane divides the volume into
two unequal volumes d L2 and (L − d) L2, and the other configuration is a
reference configuration where the cavity is partitioned into two equal volumes
L3

2 . The difference of energies for these configurations is given by

∆E = Ed + EL−d − 2 EL
2

(1099)

In the limit L → ∞ this is expected to reduce to the energy of interaction
between the planes separated by distance d. Since the volume and surface areas
of the two partitions are identical, one finds that the difference in energy of the
two configurations is finite and is given by

lim
L≫d,λ→0

∆E → − π2

720

h̄ c L2

d3
(1100)

The d-dependence of the energy difference leads to an attractive force between
the two plates separated by a distance d, which is the Casimir force

F = − π2

240
h̄ c

L2

d4
(1101)

The force is proportional to L2 which is the area of the wall of the cavity. The
predicted force was measured by Sparnaay60. A more recent experiment involv-
ing a similar force between a planar surface and a sphere has achieved greater

59Our considerations only include the part of Fock space that corresponds to having zero
numbers of excited quanta. Hence, the Casimir force is due to the properties of the field, and
is not due to the transmission of real particles (photons) between the planes.

60M. J. Sparnaay, Physica 24, 751 (1958).
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Figure 35: The separation-dependent force between two closely spaced metallic
surfaces due to the modification of the zero-point energy. The lower panel shows
the difference between the experimental results and the theoretical prediction
for the Casimir Force. [After S. K. Lamoreaux, Phys. Rev. Lett. 78, 5, (1997).]

accuracy61.

To summarize, the physical quantity is the force or difference in energies
when one wall is moved. When the change in energy is calculated, the differ-
ence between the two divergent energies is finite and independent of the choice
of cut-off62.

Cut-Off Independence

It is the boundary condition and not the cut-off that plays an important role
in the Casimir effect. For simplicity, one can choose zero boundary conditions.
The zero-point energy of a cylindrical electromagnetic cavity of radius R and
length d can be expressed as the sum

Ed = 2
h̄ c

2

π R2

( 2 π )

∞∑

nz=1

∫
dkρ kρ

√

k2
ρ +

(
π nz
d

)2

F

(√

k2
ρ +

(
π nz
d

)2 )

(1102)
where F (z) is an arbitrary cut-off function (which may depend on an arbitrary
parameter λ which is ultimately going to be set to zero). The cut-off must not
effect the low energy-modes so one can choose F (0) = 1 and all the derivatives
of F (z) to be zero for finite values of z. These assumptions are all in accord with

61S. K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997).
62The independence of any cut-off procedure can be shown by evaluating the divergent sums

by using the Euler-Maclaurin summation formula.
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Figure 36: The schematic form of the cut-off function F (z).

the ideal case of no cut-off function or F (z) = 1. The energy can be written as

Ed =
h̄ c R2

2

∞∑

nz=1

f(nz) (1103)

where

f(nz) =

∫ ∞

0

dkρ kρ

√

k2
ρ +

(
π nz
d

)2

F

( √

k2
ρ +

(
π nz
d

)2 )
(1104)

The summation can be performed by changing it into an integral, however the
corrections due to smoothing will be kept. This is accomplished by the Euler-
Maclaurin formula. The integral between 0 and N of a function can be roughly
expressed as a summation

∫ N

0

dx f(x) ≈ 1

2
f(0) +

N−1∑

n=1

f(n) +
1

2
f(N) (1105)

by choosing to approximate the integral by the area under a histogram where
the x variable is binned into intervals of width unity centered around x = n.
The corrections at n = 0 and n = N are needed to account for the fact that the
range of integration excludes half the width of the rectangular blocks centered on
n = 0 and n = N . The Euler-Maclaurin formulae is equivalent to finding a good
smooth polynomial fit to the integrand, and then integrating the polynomial.
It generates corrections which are given by the derivatives at the end points

∫ N

0

dx f(x) =
1

2
f(0) +

N−1∑

n=1

f(n) +
1

2
f(N)

+
B2

2!
( f (1)(0) − f (1)(N) ) +

B4

4!
( f (3)(0) − f (3)(N) ) + . . .

(1106)
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We shall assume that f(n) and all its derivatives vanishes in the limit of large
n, limN→∞ f(N) → 0, due to the behavior of the cut-off function. The
corrections in the Euler-Maclaurin summation formulae can be evaluated by
noting that the first derivative of f(n) with respect to n is given by

f (1)(n) =
π2 n

d2

∫ ∞

0

dkρ
kρ√

k2
ρ + (π n

d
)2

F

( √

k2
ρ +

(
π n

d

)2 )
(1107)

since the derivatives of F (z) all vanish for finite z. The integration over the
variable kρ is re-expressed in terms of an integration over the variable z, defined
by

z =

√

k2
ρ +

(
π n

d

)2

(1108)

so

dz = dkρ
kρ√

k2
ρ +

(
π n
d

)2
(1109)

The integration is evaluated through integration by parts

f (1)(n) =
π2 n

d2

∫ ∞

πn
d

dz F (z)

=
π2 n

d2

∫ ∞

πn
d

dz

(
∂z

∂z

)
F (z)

=
π2 n

d2
z F (z)

∣∣∣∣
∞

πn
d

= − π3 n2

d3
(1110)

In deriving the above expression, the condition that the first-order derivative of
F (z) vanishes for finite z has been used. It immediately follows that

f (2)(n) = − 2 π3 n

d3
(1111)

and

f (3)(n) = − 2 π3

d3
(1112)

and all higher order derivatives vanish. Hence, one finds that at z = 0 all the
m-th order derivatives f (m)(0) vanish, except for m = 3 which is given by

f (3)(0) = − 2 π3

d3
(1113)

192



Hence, on evaluating the energy of the cylindrical cavity (and using the zero
boundary conditions), one finds that the energy is composed of the sum of an
integral and a finite number of other terms. The integral part of the expression
only depends on the volume of the cavity and is proportional to a divergent
integral, and hence drops out when the energy differences are taken. The only
terms that yield non-zero contributions to the energy difference originate with
f (3)(0) and depend on d. It is these terms that give rise to the Casimir force.
This approach also showed that any particular choice made for the cut-off is
irrelevant.

Mathematical Interlude:

The Euler-Maclaurin Summation Formula.

The Euler-Maclaurin formula allows one to accurately evaluate the difference
of finite summations and their approximate evaluations in the form of integrals.

The Euler-Maclaurin Formula

If N is an integer and f(x) is a smooth differentiable function defined for all
real values of x between 0 and N , then the summation

S =
N−1∑

n=1

f(n) (1114)

can be approximated by an integral

I =

∫ N

0

dx f(x) (1115)

In particular, by utilizing the “trapedoizal rule”, one expects that

I ∼ S +
1

2

(
f(0) + f(N)

)
(1116)

The Euler-Maclaurin formula provides expressions for the difference between the
sum and the integral in terms of the higher-derivatives f(n) at the end points
of the interval 0 and N . For any integer p, one has

S +
1

2

(
f(0) + f(N)

)
− I =

p∑

n=1

B2n

(2n)!

(
f2n−1(N) − f2n−1(0)

)
+ R

(1117)
where B1 = -1/2, B2 = 1/6, B3 = 0, B4 = -1/30, B5 = 0, B6 = 1/42, B7 =
0, B8 = -1/30, ... are the Bernoulli numbers, and R is an error term which is
normally small if the series on the right is truncated at a suitable value of p.

The Remainder Term
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The remainder R when the series is truncated after p terms is given by

R = (−1)p
∫ N

0

dx f (p+1)(x)
Pp+1(x)

(p+ 1)!
(1118)

where Pn(x) = Bn(x− [x]) are the periodic Bernoulli polynomials. The remain-
der term can be estimated as

| R | ≤ 2

(2π)p

∫ N

0

dx | f2p−1(x) | (1119)

Derivation by Induction

First we shall examine the properties of the Bernoulli polynomials and the
Bernoulli numbers. Then we shall indicate how the Euler-Maclaurin formula
can be obtained by induction.

The Bernoulli polynomials Bn(x), for n = 0, 1, 2, ... are defined by the
generating function expansion

G(z, x) =
z ezx

ez − 1
=

∞∑

n=0

Bn(x)
zn

n!
(1120)

Furthermore, when x = 0, one has

G(z, 0) =
z

ez − 1
=

∞∑

n=0

Bn
zn

n!
(1121)

where Bn are the Bernoulli constants. Hence, the Bernoulli constants are the
Bernoulli polynomials evaluated at x = 0, i.e. Bn(0) = Bn. Furthermore, on
differentiating the generating function w.r.t. x, one finds

∂G(z, x)

∂x
= z G(z, x) (1122)

which implies that

∞∑

n=0

∂Bn(x)

∂x

zn

n!
= z

∞∑

n=0

Bn(x)
zn

n!
(1123)

On equating the coefficients of zn in the above equation, one obtains the im-
portant relation

∂Bn(x)

∂x
= n Bn−1(x) (1124)

Therefore, by integration it easy to show that Bn(x) are polynomials of degree
n. The first few Bernoulli polynomials can be explicitly constructed from the
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generating function expansion. The first few polynomials are given by

B0(x) = 1

B1(x) = x− 1

2

B2(x) = x2 − x+
1

6

B3(x) = x3 − 3

2
x2 +

1

2
x

B4(x) = x4 − 2x3 + x2 − 1

30

B5(x) = x5 − 5

2
x4 +

5

3
x3 − 1

6
x

. . . (1125)

From the generating function expansion, one can show that the Bernoulli poly-
nomials are either even or odd functions of x− 1

2 . The generating function can
be expressed

G(z, x) = ez(x−
1
2 )

(
z

e
z
2 − e−

z
2

)
=

∞∑

n=0

Bn(x)
zn

n!
(1126)

where the second factor is an even function of z, thus, the generating function is
invariant under the combined transformation z → −z and (x− 1

2 ) → −(x− 1
2 ).

Therefore, one has

∞∑

n=0

Bn

(
1

2
+ x− 1

2

)
zn

n!
=

∞∑

n=0

Bn

(
1

2
+

1

2
− x

)
( − 1 )n

zn

n!
(1127)

so the polynomials satisfy

Bn(x) = ( − 1 )n Bn(1 − x) (1128)

In particular for x = 1, one has

Bn(1) = ( − 1 )n Bn(0) (1129)

The generating function with x = 0 can be re-written as the sum of its even
and odd parts

G(z, 0) =

( z
2

tanh z
2

)
− z

2
=

∞∑

n=0

Bn(0)
zn

n!
(1130)

The even part has only even terms in its Taylor expansion, and there is only
one term in the odd part. Hence, the odd Bernoulli numbers vanish for n > 1,
i.e. B2n+1(0) = 0 for n > 0. Therefore, for n ≥ 2, one has Bn(0) = Bn(1). This
equality can be used to evaluate the integrals of the Bernoulli polynomial over
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the range from 0 to 1. On expressing the integral of Bn(x) in terms of Bn+1(x),
one has

∫ 1

0

dx Bn(x) =
1

(n+ 1)

∫ 1

0

dx
∂Bn+1(x)

∂x

=
Bn+1(1) − Bn+1(0)

( n+ 1 )

= 0 for n ≥ 1 (1131)

Hence, the Bernoulli polynomials may be defined recursively via the relation

∂Bn(x)

∂x
= n Bn−1(x) (1132)

if the constant of integration is fixed by

∫ 1

0

dx Bn(x) = 0 for n ≥ 1 (1133)

The periodic Bernoulli functions Pn(x) can be defined by

Pn(x) = Bn(x− [x]) (1134)

where [x] is the integral part of x. This definition of Pn(x) reproduces to the
Bernoulli polynomials on the interval (0, 1) since [x] = 0 in this interval. The
functions Pn(x) are periodic over an extended range of x with period 1.

The Euler-Maclaurin formula can be obtained by mathematical induction.
Consider the integral

∫ n+1

n

dx f(x) =

∫ n+1

n

dx u
∂v

∂x
(1135)

with the identification of
u = f(x) (1136)

and
∂v

∂x
= 1 = P0(x) (1137)

since P0(x) = 1. Therefore, on using the recursion relation involving the
derivative of the Bernoulli polynomials, one finds that

v = P1(x) (1138)

Integrating by parts, one obtains

∫ n+1

n

dx f(x) = [ f(x) P1(x) ]n+1
n −

∫ n+1

n

dx
∂f(x)

∂x
P1(x) (1139)
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but since the periodic Bernoulli polynomial P1(x) is given by

P1(x) = (x − [x]) − 1

2
(1140)

it has the value of 1/2 at the limits of integration. Hence, the integration reduces
to

∫ n+1

n

dx f(x) =

(
f(n+ 1) + f(n)

2

)
−
∫ n+1

n

dx
∂f(x)

∂x
P1(x) (1141)

Summing the above expression from n = 1 to n = N − 1, yields

∫ N

1

dx f(x) =

(
f(1) + f(N)

2

)
+
N−1∑

n=2

f(n) −
∫ N

1

dx
∂f(x)

∂x
P1(x) (1142)

Adding

(
f(1) + f(N)

2

)
to both sides of the equation and rearranging, one finds

N∑

n=1

f(n) =

∫ N

1

dx f(x) +

(
f(1) + f(N)

2

)
+

∫ N

1

dx
∂f(x)

∂x
P1(x) (1143)

The last two terms, therefore, give the error when the sum is approximated by
an integral. The first correction is simply the end point corrections from the
“trapezoidal rule”, and the second correction has to be evaluated to yield the
Euler-Maclaurin formula. The last correction is of the form of an integral which
can be expressed in terms of the sum of the integrals

∫ n+1

n

dx f ′(x) P1(x) (1144)

where the prime refers to the derivative of f(x) w.r.t. x. The above expression
can be evaluated by integrating by parts. The integrand is re-written as

∫ n+1

n

dx f ′(x) P1(x) =

∫ n+1

n

dx u
∂v

∂x
(1145)

where one identifies the two factors as

u = f ′(x)

∂v

∂x
= P1(x) (1146)

Since the indefinite integral is evaluated as

∫ x

dx′ P1(x
′) =

1

2
P2(x) (1147)
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the integration by parts yields

∫ n+1

n

dx P1(x) f
′(x) =

[
P2(x) f

′(x)

2

]n+1

n

− 1

2

∫ n+1

n

dx f ′′(x) P2(x) (1148)

However, one has P2(0) = P2(1) = B2, therefore the above expression simplifies
to
∫ n+1

n

dx P1(x) f
′(x) = B2

(
f ′(n+ 1) − f ′(n)

2

)
− 1

2

∫ n+1

n

dx f ′′(x) P2(x)

(1149)
Then, on summing the above expression from n = 1 to n = N − 1, one finds
∫ N

1

dx P1(x) f
′(x) = B2

(
f ′(N) − f ′(1)

2

)
− 1

2

∫ N

1

dx f ′′(x) P2(x) (1150)

This yields the first term in the series of end point corrections in the Euler-
Maclaurin formula, where the correction is the sum of the first derivatives at
the end points multiplied by B2/2!. The above process can be iterated yielding
a complete proof of the Euler-Maclaurin summation formula.

In order to get bounds on the size of the error when the sum is approximated
by the integral, we note that the Bernoulli polynomials on the interval [0, 1] at-
tain their maximum absolute values at the endpoints and the value Bn(1) is the
n-th Bernoulli number.
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11.3.2 The Lamb Shift

The Lamb shift is a shift between the energy levels of the 2 2S 1
2

and the 2 2P 1
2

levels of hydrogen from the predictions of the Dirac equation as they have the
same n and j values (j = l ± s). The Dirac equation predicts that these two
levels should be degenerate. However, these levels were measured by Lamb and
Retherford63 who found that the 2 2S 1

2
level is higher than the 2 2P 1

2
level

by 1058 MHz or 0.033 cm−1. Bethe explained this in terms of the interaction
between the bound electron and the quantized electromagnetic field64. Simi-
lar shifts should also occur between the n 2S 1

2
and the n 2P 1

2
levels, but the

63W. E. Lamb Jr. and R. C. Retherford, Phys. Rev.72, 241 (1947).
64H. A. Bethe, Phys. Rev. 72, 339 (1947).
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magnitude of the shifts should be much smaller, as the magnitude varies as n−3.

Qualitatively, the electron interacts with the fluctuating electromagnetic
field and with the potential due to the nucleus. The zero-point fluctuations
cause the electron to deviate from its quantum orbit by an amount given by ∆r
and, therefore, experiences a potential given by

V (r + ∆r) = V (r) + ∆r . ∇V (r) +
1

2!
( ∆r . ∇ )2 V (r) + . . . (1151)

so one expects an energy-shift given by

∆E =
1

3 . 2!
< ∆r2 > < nlm | ∇2V (r) | nlm > (1152)

Due to the form of the Coulomb potential

V (r) = − e2

r
(1153)

the Laplacian is related to a point charge density at the nucleus

∇2V (r) = 4 π e2 δ(r) (1154)

Hence, the shift due to the fluctuations in the electron’s potential energy occurs
primarily at the origin. The effect of the electromagnetic fluctuations on the
kinetic energy are not state specific, and can be considered as a uniform shift
of all the energy levels, like the electron’s rest mass energy m c2. Thus, the
relative energy shift of the levels is solely determined by the potential at the
origin. Therefore, the states with non-zero angular momenta do not experience
the relative energy-shift since the electronic wave functions vanish at the origin.
Thus, only the 2s state experiences a shift but the 2p state is unshifted.

The magnitude of the Lamb shift can be ascertained by expressing ∆r in
terms of the zero-point fluctuations in the electromagnetic field65. If it is as-
sumed that the electron is bound to the atom harmonically, ∆r is determined
from the equation of motion

∆r̈ + ω2
0 ∆r =

q

m
E (1155)

where the electric field E has components that are fluctuating with wave vector k
or equivalently with frequency ω. This has the result that the position fluctuates
at the frequency ω with an amplitude given by

∆rω =
q

m
Eω

1

ω2
0 − ω2

(1156)

65T. A. Welton, Phys. Rev. 74, 1557 (1948).
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∆r (t)

Figure 37: A cartoon depicting the modification of the classical orbit of an
electron due to the zero-point fluctuations of the electromagnetic field.

where Eω is the Fourier component of the fluctuating electric field. Hence, the
ω-component of the mean squared fluctuation66 in the particle’s position is given
by

< | ∆r2ω | > =

(
q

m

)2

< | E2
ω

( ω2
0 − ω2 )2

| > (1157)

On approximating the electromagnetic energy associated with the fluctuating
electromagnetic field < | E2

ω | > by the half the sum of the zero-point energies
of the photon modes, one has

V

8 π
< | E2

ω | > = 2
1

4
h̄ ω (1158)

where the factor 2 represents the two types of polarization of the normal modes.
Therefore, on summing over the normal modes, one finds that the mean squared
deviation of the electron’s trajectory from the classical orbit is proportional to

V

( 2 π c )3

∫
dΩ

∫ ∞

0

dω ω2 < | E2
ω

( ω2
0 − ω2 )2

| >

=
4 π h̄

V

V

( 2 π c )3

∫
dΩ

∫ ∞

0

dω
ω3

( ω2
0 − ω2 )2

(1159)

The integration over ω can be approximated as

∫ mc2

h̄

ω0

dω

ω
= ln

m c2

h̄ ω0
(1160)

where an upper and lower cut-off have been introduced to prevent the integral
from diverging67. The expectation value of the second derivative of the potential

66The average squared fluctuation of the electromagnetic field should, in principle, be cal-
culated as an average over a volume in time and space which encompasses the electron’s
trajectory.

67The upper limit can be considered as being determined by the spatial dimension of the
volume in which the electromagnetic fluctuations are being averaged over. The divergence at
the lower limit of integration is unphysical and is caused by the neglect of the lifetimes of
the electronic states. The inclusion of the lifetimes result in the integrand being finite at the
resonance frequency ω0
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for the 2s state is given by

< | ∇2V | > = 4 π e2
1

π a3
(1161)

where the second factor represents the 2s electron density at the origin. The
corresponding factor for an ns level is expected to vary proportionally to n−3.
Combining the above expressions, one finds that the 2s level is shifted by an
energy given by

∆E2s =
4

2 π

(
e2

h̄ c

)3 (
m e4

h̄2

)
ln
m c2

h̄ ω0
(1162)

where the frequency of the electron’s orbit ω0 has been chosen as a lower cut-off
on the frequency of the electromagnetic fluctuations. Since the logarithmic fac-

tor is approximately given by ∼ −2 ln e2

h̄c
, one can see that the above estimate

is consistent with the Lamb shift having a magnitude of approximately 4.372
×10−6 eV.

11.3.3 The Self-Energy of a Free Electron

The corrections to the energy of a free electron due to its coupling to the elec-
tromagnetic field are to be considered68. It shall be assumed that the electro-
magnetic field is in the ground state | {0} > , and the energy of an electron in
a state with momentum q will be evaluated via perturbation theory.

The lowest-order correction to the electron’s energy comes from the diamag-
netic interaction. From first-order perturbation theory, one finds the correction

∆E(1)
q = < q {0} | Ĥdia | q {0} > (1163)

On using a plane-wave to represent the electronic wave function

ψq(r) =
1√
V

exp

[
i q . r

]
(1164)

then the first-order change in the electron’s energy due to the coupling to the
field is given by

∆E(1)
q =

(
e2

2 m c2

) ∑

k,α,k′,α′

(
2 π h̄ c2

V

)
ǫ̂α(k) . ǫ̂α′(k′)√

ωk ωk′
< {0} | ak′,α′ a†k,α | {0} >

× 1

V

∫
d3r exp

[
− i q . r

]
exp

[
i ( k′ − k ) . r

]
exp

[
i q . r

]

68W. Heisenberg and W. Pauli, Z. Physik, 56, 1 (1929),
W. Heisenberg and W. Pauli, Z. Physik, 59, 168 (1930).
I. Waller, Z. Physik, 59, 168 (1930).
I. Waller, Z. Physik, 61, 721 & 837 (1930).
I. Waller, Z. Physik, 62, 673 (1930).
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q q

(k,α)

Figure 38: The first-order correction to the rest mass of the electron due to the
diamagnetic interaction.

=

(
e2

2 m c2

) ∑

k,α,k,α′

(
2 π h̄ c2

V

)
ǫ̂α(k) . ǫ̂α′(k′)√

ωk ωk′
δk,k′ δα,α′ (1165)

since the electronic matrix elements give rise to the condition of conservation of
momentum. Hence, the correction to the energy is found as

∆E(1)
q =

(
e2

2 m c2

)
V

( 2 π )3

(
2 π h̄ c

V

)
2

∫
d3k

1

k

=

(
e2

2 m c2

)
V

( 2 π )3

(
2 π h̄ c

V

)
8 π

∫ ∞

0

dk k

=

(
e2 h̄

π m c

) ∫ ∞

0

dk k (1166)

which diverges. This contribution is independent of the electron’s momentum
q, and since k = k′ it can be seen that the contribution of the diamagnetic
interaction to first-order is independent of the quantum state of the electron.
This contribution to the electron’s energy can be lumped together with the elec-
tron’s rest-energy m c2. However, since the corrections are being evaluated for
non-relativistic electrons for which the rest energy is not observable, it is cus-
tomary to ignore the rest-energy and, therefore, this correction shall no longer
be considered.

The paramagnetic interaction, when taken to second-order, also yields a
correction to the electron’s self-energy. This correction can be considered to be
due to a virtual process in which the electron emits a photon and then re-absorbs
it. The second-order correction to the energy is evaluated from

∆E(2)
q =

∑

q′,k,α

< q {0} | Ĥpara | q′ 1k,α > < q′ 1k,α | Ĥpara | q {0} >

Eq′ + h̄ ωk − Eq

(1167)
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q q
q-k

(k,α)

Figure 39: The second-order self-energy correction of a free electron due to
the paramagnetic interaction. The electron with momentum q emits a virtual
photon with momentum k and then reabsorbs it.

where | q′ 1k,α > is a one-photon intermediate state of the electron-photon
system. We assume that the process does not conserve energy, so that the
denominator is finite. The matrix elements are evaluated as

< q′ 1k,α | Ĥpara | q {0} > =

√
2 π h̄ c2

V ωk
h̄ ǫ̂α(k) . q

× 1

V

∫
d3r exp

[
− i q′ . r

]
exp

[
− i k . r

]
exp

[
i q . r

]

=

√
2 π h̄ c2

V ωk
h̄ ǫ̂α(k) . q δq′+k−q (1168)

which leads to momentum conservation. The second-order correction to the
electron’s energy takes the form

∆E(2)
q =

(
e2

m2 c2

) ∑

k,α

(
2 π h̄ c2

V ωk

) | h̄ q . ǫ̂α(k) |2
h̄2 q2

2 m
− h̄2 (q−k)2

2 m
− h̄ ωk

(1169)

On summing over the polarizations by using the diadic completeness relation69

∑

α

ǫ̂α(k) ǫ̂α(k) = Î − k̂ k̂ (1170)

69The completeness relation merely expresses the fact that any vector in a three-dimensional
space can be expressed in terms of the components along three orthogonal directions êi

A =

3∑

i=1

Ai êi

where the components are given by the scalar product

Ai = A . êi

Hence, the completeness relation follows as

I =
∑

i

êi êi

.
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one finds that the numerator is given by

∑

α

h̄2 | q . ǫ̂α(k) |2 = h̄2 q2 ( 1 − cos2 θ ) (1171)

where θ is the angle between q and k

q . k = q k cos θ (1172)

Hence, one has

∆E(2)
q =

(
e2

m2 c2

)
V

( 2 π )3

∫
d3k

(
2 π h̄ c2

V ωk

)
h̄2 q2 ( 1 − cos2 θ )

h̄2 q2

2 m
− h̄2 (q−k)2

2 m
− h̄ ωk

=

(
e2 h̄

2 π m2 c

) ∫ ∞

0

dk k

∫ π

0

dθ sin θ
h̄2 q2 ( 1 − cos2 θ )

h̄2 q k
m

cos θ − h̄2 k2

2 m
− h̄ c k

(1173)

This contribution can be written as being explicitly proportional to the kinetic
energy of the electron, and a factor of k can be cancelled from the numerator
and the denominator

∆E(2)
q =

h̄2 q2

2 m

(
e2

h̄ c

)
2

π

∫ ∞

0

dk

∫ π

0

dθ sin θ
( 1 − cos2 θ )

2 q cos θ − k − 2 m c
h̄

(1174)

It should be evident that the integral diverges logarithmically at large k. The
divergent part of the integral can be written as

∆E(2)
q ∼ − h̄2 q2

2 m

(
e2

h̄ c

)
2

π

∫ π

0

dθ sin θ ( 1 − cos2 θ )

∫ ∞

2mc
h̄

dk

k

= − h̄2 q2

2 m

(
e2

h̄ c

)
8

3 π

∫ ∞

2mc
h̄

dk

k
(1175)

If an upper cut-off λ−1
+ is introduced, then the correction to the electron’s kinetic

energy can be estimated as

∆E(2)
q = − h̄2 q2

2 m

8

3 π

(
e2

h̄ c

)
ln

(
h̄

2 m c λ+

)
(1176)

This shift can be interpreted as a (second-order) renormalization of the electron’s
mass from the un-renormalized mass to the physical mass m∗

1

m∗ =
1

m

[
1 − 8

3 π

(
e2

h̄ c

)
ln

(
h̄

2 m c λ+

)
+ . . .

]
(1177)

It is the renormalized mass m∗ which would be determined by an experiment.
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11.3.4 The Self-Energy of a Bound Electron

The Lamb shift (a quantum electrodynamic shift of the 2s level of Hydrogen
upwards by 1058 MHz) is caused the self-energy of a bound electron. The
self-energy of the state nlm can be estimated from second-order perturbation
theory using the dipole approximation, as is appropriate for a completely non-
relativistic calculation. The second-order shift is given by

∆E
(2)
nlm =

(
e2

m2 c2

) ∑

k,α,n′l′m′

(
2 π h̄ c2

V ωk

) | < n′l′m′ | ǫ̂α(k) . p̂ | nlm > |2
Enlm − En′l′m′ − h̄ ωk

(1178)
On summing over the polarizations using the completeness relation, one obtains

∆E
(2)
nlm =

(
e2

m2 c2

)
h̄ c

( 2 π )

∫ ∞

0

dk k

∫ π

0

dθk sin θk
∑

n′l′m′

| < n′l′m′ | p̂ | nlm > |2 ( 1 − cos2 θk )

Enlm − En′l′m′ − h̄ ωk

(1179)
where θk is the angle subtended between k and the matrix elements of p. The
angular integration can be performed, yielding

∆E
(2)
nlm =

(
e2

m2 c2

)
2 h̄ c

3 π

∫ ∞

0

dk k
∑

n′l′m′

| < n′l′m′ | p̂ | nlm > |2
Enlm − En′l′m′ − h̄ ωk

(1180)
In the completely non-relativistic limit, the integration over k can be shown to
be linearly divergent at the upper limit of integration.

Hans Bethe argued70 that, within the same dipole approximation, the cor-
rection to the kinetic energy of the electron in the state | nlm > is given by an
expression analogous to that of an electron in a continuum state n

∆T (2)
n =

2

3 π

(
e2

h̄ c

) (
h̄

m c

)2 ∫ ∞

0

dω ω
∑

n′

| < n′ | p̂ | n > |2
En − En′ − h̄ ω

(1181)

Since momentum is conserved for continuum states (on average), only the state
where n = n′ contribute so the denominator simplifies71. The expression for the
mass renormalization is divergent and is given by

∆T (2)
n = − 2

3 π

(
e2

h̄ c

) (
h̄

m c

)2 ∫ ∞

0

dω ω
∑

n′

| < n′ | p̂ | n > |2
h̄ ω

= − 4

3 π

(
e2

h̄ c

) (
h̄

m c2

) ∫ ∞

0

dω ω

ω

< n | p̂2 | n >

2 m
(1182)

where the completeness relation has been used. This expression is valid if n
labels either a continuum or a discrete state, since only the mass of the electron

70H. A. Bethe, Phys. Rev. 72, 339 (1947).
71Since we are now using the dipole approximation, the recoil of the free electron which was

taken into account in our previous analysis is now being ignored. [See the denominator of the
first line of eqn(1173).]

205



is being altered and the expectation value of p̂ is unaltered. Thus, Bethe argued,
the kinetic energy of an electron in a bound state which has the physical mass
m∗ should be approximated as

< nlm | p̂2

2 m∗ | nlm > = < nlm | p̂2

2 m
| nlm >

− 4

3 π

(
e2

h̄ c

) (
h̄

m c2

) ∫ ∞

0

dω ω

ω

< nlm | p̂2 | nlm >

2 m

(1183)

Now the bare Hamiltonian for an electron bound to a nucleus is given by

Ĥ0 =
p̂2

2 m
+ V (r) (1184)

and the unperturbed energy of the state | nlm > of a hypothetical electron
with mass m is calculated in the non-relativistic Schrödinger theory as

E
(0)
nlm = < nlm | p̂2

2 m
| nlm > + < nlm | V (r) | nlm > (1185)

However, in order to obtain a sensible numerical value for the approximate

energy, E
(0)
nlm has to be expressed in terms of the observed physical mass m∗.

Therefore, the bare Hamiltonian has to be expressed in terms of the physical
mass and compensating radiative corrections to the mass

E
(0)
nlm = < nlm | p̂2

2 m∗ | nlm > + < nlm | V (r) | nlm >

+
4

3 π

(
e2

h̄ c

) (
h̄

m c2

) ∫ ∞

0

dω ω

ω

< nlm | p̂2 | nlm >

2 m

= < nlm | p̂2

2 m∗ | nlm > + < nlm | V (r) | nlm >

+
4

3 π

(
e2

h̄ c

) (
h̄

m c2

) ∫ ∞

0

dω ω

ω

∑

n′l′m′

| < n′l′m′ | p̂ | nlm > |2
2 m

(1186)

The completeness relation was used in obtaining the last line. The second term
in the above expression for the unperturbed energy is the correction due to
the mass renormalization72 which should be combined with the second-order
radiative correction. The total energy (to second-order) is given by

Enlm = E
(0)
n,l,m + ∆E

(2)
n,l,m

72Renormalization is an idea which Bethe attributed to H. A. Kramers. Kramers had
proposed that physical quantities should be expressed in terms of observable quantities, with
all mention of bare quantities removed. Kramers was advocating a classical treatment from
which Bethe created a non-relativistic quantum treatment.
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= < nlm | p̂2

2 m∗ | nlm > + < nlm | V (r) | nlm >

+
2

3 π

(
e2

h̄ c

) (
h̄

m c

)2 ∫ ∞

0

dω ω
∑

n′l′m′

| < n′l′m′ | p̂ | nlm > |2
h̄ ω

+
2

3 π

(
e2

h̄ c

) (
h̄

m c

)2 ∫ ∞

0

dω ω
∑

n′l′m′

| < n′l′m′ | p̂ | nlm > |2
Enlm − En′l′m′ − h̄ ω

(1187)

The overall (second-order) shift from the Schrödinger estimate of the energy for
the state | nlm > (as calculated with the physical mass) is given by the sum
of the last two terms, which is expressed as

∆Eshift
nlm =

2

3 π

(
e2

h̄ c

) (
h̄

m c

)2 ∫ ∞

0

dω ω
∑

n′l′m′

| < n′l′m′ | p̂ | nlm > |2 ( Enlm − En′l′m′ )

( Enlm − En′l′m′ − h̄ ω ) h̄ ω

(1188)

The integration over ω is logarithmically divergent, and can be made to con-
verge by introducing an upper cut-off ω+ = c λ−1. Therefore, the difference
of the linearly divergent self-energy of the bound electron and the linearly di-
vergent self-energy of the free electron is only logarithmically divergent. After
introducing the cut-off, one finds the result

∆Eshift
nlm = − 2

3 π

(
e2

h̄ c

) ∑

n′l′m′

| < n′l′m′ | p̂ | nlm > |2
m2 c2

× ( Enlm − En′l′m′ ) ln

∣∣∣∣
h̄cλ−1 + En′l′m′ − Enlm

En′l′m′ − Enlm

∣∣∣∣
(1189)

The square of the mass m can safely be replaced by the square of the physical
mass m∗ in the expression for the energy shift, since we are only working to

first order in e2

h̄ c
. All other quantities have been expressed in terms of the

physical mass. If the rest energy of the electron is used as the upper cut-off
energy m c2 ∼ 0.5 × 106 eV, and assuming that the averaged logarithm of the
electron excitation energy corresponds to an energy of the order of 17.8 Ryd,
then the logarithm has a value of about 7.63 and is not sensitive to the precise
value of Enlm − En′l′m′ and, therefore, can be taken outside the summation

∆Eshift
nlm = − 2

3 π

(
e2

h̄ c

)
ln

∣∣∣∣
2 h̄2 c2

Z2 e4

∣∣∣∣

×
∑

n′l′m′

| < n′l′m′ | p̂ | nlm > |2
m2 c2

( Enlm − En′l′m′ )

(1190)

As later shown by Dyson73, that divergences found in any order in e2

h̄ c
can

73F. J. Dyson, Phys. Rev. 75, 1736 (1949).
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be removed by consistently using the ideas of mass and charge renormaliza-
tion74. Hence, a completely consistent relativistic theory does yield a finite
shift, without the need to invoke any cut-off75. The weighted sum over the
matrix elements can be evaluated by expressing it in terms of an expectation
value involving commutators of Ĥ0 with p̂. That is

∑

n′l′m′

| < n′l′m′ | p̂ | nlm > |2 ( Enlm − En′l′m′ )

=
∑

n′l′m′

< nlm | p̂ | n′l′m′ > < n′l′m′ | [ p̂ , Ĥ0 ] | nlm >(1191)

and using the completeness relation, one obtains

= < nlm | p̂ [ p̂ , Ĥ0 ] | nlm > (1192)

Likewise,

∑

n′l′m′

| < n′l′m′ | p̂ | nlm > |2 ( Enlm − En′l′m′ )

= −
∑

n′l′m′

< nlm | [ p̂ , Ĥ0 ] | n′l′m′ > < n′l′m′ | p̂ | nlm >

(1193)

which results in

= − < nlm | [ p̂ , Ĥ0 ] p̂ | nlm > (1194)

Thus, on adding the above two equations and dividing by two, one finds

∑

n′l′m′

| < n′l′m′ | p̂ | nlm > |2 ( Enlm − En′l′m′ )

=
1

2
< nlm | [ p̂ , [ p̂ , Ĥ0 ] ] | nlm > (1195)

On substituting
p̂ = − i h̄ ∇ (1196)

and

Ĥ0 =
p̂2

2 m
+ V (r) (1197)

74This statement does not imply that a properly renormalized perturbation theory is con-
vergent. In fact, one may argue that if the coupling constant changed sign then systems
containing electrons would be unstable to BCS pairing. Since the radius of convergence of
any expansion is limited by the closest singularity, perturbation theory may only have a zero
radius of convergence. In this case, the theory may be expected to contain non-analytic terms
of the form exp[ − h̄ c/ e2].

75F. J. Dyson, Phys. Rev. 173, 617 (1948).
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into the expression for the matrix elements, one obtains
∑

n′l′m′

| < n′l′m′ | p̂ | nlm > |2 ( Enlm − En′l′m′ )

= − h̄2

2

∫
d3r ψnlm(r) ∇2V (r) ψnlm(r) (1198)

Substituting the expressions for the matrix elements into the expression for the
Lamb-shift yields

∆Eshift
nlm =

2

3 π

(
e2

h̄ c

) (
h̄2

m2 c2

)
ln

∣∣∣∣
2 h̄2 c2

Z2 e4

∣∣∣∣ < nlm | ∇2V (r) | nlm >

(1199)

Thus, the energy-shift only occurs for bound electrons as the expectation value of
the Laplacian of the potential will vanish for extended states. For a hydrogenic-
like atom

∇2V (r) = 4 π Z e2 δ3(r) (1200)

so

∆Eshift
nlm =

4 Z e2

3

(
e2

h̄ c

) (
h̄2

m2 c2

)
| ψnlm(0) |2 ln

∣∣∣∣
2 h̄2 c2

Z2 e4

∣∣∣∣ (1201)

Therefore, the Lamb shift only occurs for electrons with l = 0, since electronic
wave functions with l 6= 0 vanish at the origin. The atomic wave function at
the position of the nucleus is given by

| ψn00(0) |2 =
1

π

(
Z

n a

)3

(1202)

This yields Bethe’s estimate for the Lamb shift as

∆Eshift
n00 =

4

3 π n3

(
e2

h̄ c

)3 (
Z4 e4 m

h̄2

)
ln

∣∣∣∣
2 h̄2 c2

Z2 e4

∣∣∣∣ (1203)

The above formulae leads to the estimate of 1040 MHz which is in good agree-
ment with the experimentally determined value76. The exact relativistic calcu-
lation77 yields the result

∆Eshift
n00 =

4

3 π n3
Z4

(
e2

h̄ c

)5

m c2
(

ln

∣∣∣∣
m c2

2 h̄ ωn,n′

∣∣∣∣ +
31

120

)
(1204)

where the mc2 in the logarithm comes from the Dirac theory without invoking
any cut-off. The most recent experimentally measured value78 is 1057.851 MHz
which is in good agreement with the theoretical value of 1057.857 MHz.

76W. E. Lamb Jr. and R. E. Retherford, Phys. Rev. 72, 241 (1947).
77N. M. Kroll and W. E. Lamb Jr., Phys. Rev. 75, 388 (1949).
78G. C. Bhatt and H. Grotch, Ann. Phys. 187, 1 (1987).
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11.3.5 Brehmstrahlung

Accelerating (or decelerating) charged particles radiate. We shall consider the
radiation emitted by a charged particle (such as an electron) that scatters from
a massive charged particle via the Coulomb interaction. It is assumed that the
mass M of the massive charged particle (in most cases, this is a nucleus) is
significantly greater than the electron mass, so that the recoil of the nucleus can
be neglected. The (instantaneous) Coulomb interaction between the electron
and the nucleus is given by

V (r) = − Z e2

r
(1205)

The Hamiltonian of the unperturbed electron is simply the kinetic energy. The
incident electron is assumed to have a momentum q and the scattered electron
has momentum q′ and the cross-section for the scattering process will be calcu-
lated via low-order perturbation theory.

Rutherford Scattering

To second-order, the scattering cross-section is expressed as Rutherford scat-
tering which is elastic and, therefore, involves no emission of photons. The

q'q

q-q'

Figure 40: The Rutherford scattering process.

Rutherford scattering cross-section is found from the Fermi-Golden rule decay
rate

(
1

τ

)

Rutherford
=

2 π

h̄
| < q′ | V (r) | q > |2 δ( Eq − Eq′ ) (1206)

The matrix elements of the Coulomb potential is evaluated as

< q′ | V (r) | q > = − 4 π Z e2

V | q − q′ |2 (1207)

On integrating over the magnitude of the scattered electron’s momentum, one
obtains
(

1

τdΩ′

)

Rutherford
=

2 π

h̄

V

( 2 π )3
dΩ′

∫ ∞

0

dq′ q′2
(

4 π Z e2

V | q − q′ |2
)2

δ( Eq − Eq′ )
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=
2 π

h̄

V

( 2 π )3
m

h̄2 q

(
4 π Z e2

V | q − q′ |2
)2

dΩ′

(1208)

The denominator in the potential has to be evaluated on the energy shell. On
introducing the scattering angle θ′ and using the elastic scattering condition

| q − q′ |2 = 2 q2 ( 1 − cos θ′ )

= 4 q2 sin2 θ
′

2
(1209)

one finds

q

q'

θ'

2q sinθ'/2

Figure 41: The geometry for Rutherford scattering. For elastic scattering, the
magnitude of the initial momentum q is equal to the magnitude of the final
momentum q′ and the scattering angle is θ′.

(
1

τdΩ′

)

Rutherford
=

2 π

h̄

V

( 2 π )3
m

h̄2 q

(
4 π Z e2

V 4 q2 sin2 θ′

2

)2

dΩ′

(1210)

On diving the scattering rate by the incident flux F of electrons

F =
h̄ q

m V
(1211)

the elastic scattering cross-section is found to be given by

(
dσ

dΩ′

)

Rutherford
=

2 π

h̄

V

( 2 π )3
V m2

h̄3

(
4 π Z e2

V 4 q2 sin2 θ′

2

)2

=

(
m Z e2

2 h̄2 q2 sin2 θ′

2

)2

(1212)

which is the Rutherford scattering cross-section for electrons. The scattering
cross-section diverges at θ′ = 0 and is always finite at θ′ = π no matter how
large q is. The scattering at θ′ = π is known as back-scattering, and is caused
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Figure 42: The scattering angle dependence of the differential scattering cross-
section.

by the extremely high potential experienced by electrons with very small im-
pact parameters. It was the large cross-section for back-scattering of charged
α-particles from atoms, found by H. Geiger and E. Marsden in 191379, that
was instrumental in verifying Rutherford’s 1911 conjecture80 that atoms have
nuclei which are of very small spatial extent. The divergence in the scattering
cross-section at θ′ = 0 is due to the long-ranged nature of the Coulomb inter-
action, which causes electrons to undergo scattering (no matter how slight the
scattering is) at arbitrarily large distances from the nucleus.

Brehmstrahlung

Elastic scattering of electrons by the Coulomb potential is highly unlikely,
since from classical electrodynamics it is known that accelerated particles ra-
diate. Hence, it is expected that photons should be emitted in this process.
This phenomenon is known as Brehmstrahlung. We shall calculate the Brehm-
strahlung scattering cross-section81 using low-order perturbation theory. The
electron is scattered between the free electron eigenstates due to a perturbation
which is a linear superposition of the Coulomb interaction with the nucleus and
the paramagnetic interaction.

The lowest-order probability amplitude describing Brehmstrahlung is a lin-
ear superposition of two processes. These are:

(a) Scattering of an electron from the nucleus followed by the emission of a pho-
ton. The initial state of the electron is assumed to have momentum q and the
final state of the electron is given by q′ while the emitted photon has momentum
k. Therefore, from conservation of momentum, the momentum of the electron

79H. Geiger and E. Marsden, Phil. Mag. 25, 1798 (1913).
80E. Rutherford, Phil. Mag. 21, 669 (1911).
81H. A. Bethe and W. Heitler, Proc. Roy. Soc. A 146, 82 (1934).
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(k,α)

q q'
q'+k

(k,α)

q q'
q-k

Figure 43: The two lowest-order processes contributing to Bremstrahlung.

in the intermediate state is given by q′ + k.

(b) Emission of a photon followed by scattering from the nucleus. Conservation
of momentum indicates that the intermediate state has momentum given by
q − k.

The matrix elements for these second-order processes are given by

Ma =

(
4 π Z e2

V | q − q′ − k |2
) (

e h̄

m c

) √
2 π h̄ c2

V ωk
ǫ̂α(k) . ( q′ + k )

×
(

1

Eq − Eq′+k + i η

)
(1213)

and

Mb =

(
4 π Z e2

V | q − q′ − k |2
) (

e h̄

m c

) √
2 π h̄ c2

V ωk
ǫ̂α(k) . ( q − k )

×
(

1

Eq − Eq−k − h̄ ωk + i η

)
(1214)

It should be noted that the numerators of the matrix elements simplify because
the photons have transverse polarizations

ǫα(k) . k = 0 (1215)

From the energy conserving delta function in the expression for the decay rate,
one finds

Eq = Eq′ + h̄ ωk (1216)

hence the first energy-denominator can be expressed in a similar form to the
second

Eq − Eq′+k = Eq′ − Eq′+k + h̄ ωk (1217)

For small k, the energy-denominators can be expanded, yielding

Eq′ − Eq′+k + h̄ ωk = h̄ ωk − h̄

m
q′ . k − h̄2 k2

2 m
(1218)
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and

Eq − Eq−k − h̄ ωk = − h̄ ωk +
h̄

m
q . k − h̄2 k2

2 m
(1219)

Since the energy of the photon cannot exceed the energy of the initial electron,
one must have q > k, so the third term is smaller than the second term. Due to
the large magnitude of c compared with the electron velocities h̄ q

m
, the second

and third terms can be neglected. Therefore, the photon-energy dominates both
the energy-denominators. On substituting the above expressions in the sum of
the matrix elements, one finds

Ma + Mb =

(
4 π Z e2

V | q − q′ − k |2
) (

e

m c

) √
2 π h̄ c2

V ωk

×
(

ǫ̂α(k) . q′ h̄

Eq′ − Eq′+k + h̄ ωk + i η
+

ǫ̂α(k) . q h̄

Eq − Eq−k − h̄ ωk + i η

)

≈
(

4 π Z e2

V | q − q′ − k |2
) (

e

m c

) √
2 π h̄ c2

V ωk

×
(
ǫ̂α(k) . ( q′ − q )

ωk

)
(1220)

Using this approximation for the matrix elements, the transition rate is given
by

1

τ
=

2 π

h̄

∑

q′

∑

k,α

(
4 π Z e2

V | q − q′ − k |2
)2 (

e

m c

)2 (
2 π h̄ c2

V ωk

)

×
∣∣∣∣
ǫ̂α(k) . ( q′ − q )

ωk

∣∣∣∣
2

δ( Eq − Eq′ − h̄ ωk ) (1221)

The terms proportional to k in the Coulomb scattering terms can be neglected,
for low k values. The inelastic scattering cross-section for Brehmstrahlung is
found by replacing the sums over q′ and k′ by integrals, and dividing by the
incident flux of electrons. This procedure results in the expression

(
d2σ

dΩ′ dωk

)

Brehmse
=

q′

q

(
2 m Z e2

h̄2 | q − q′ |2
)2 ∑

α

∫
dΩk

4 π2 ωk

(
e2

h̄ c

)

×
∣∣∣∣
h̄ ǫ̂α(k) . ( q′ − q )

m c

∣∣∣∣
2

(1222)

If the angular distributions of the emitted photon (dΩk) and the scattered elec-
tron (dΩ′) are both measured, the scattering cross-section can be represented
as
(

d3σ

dΩ′ dΩk dωk

)

Brehmse
=

q′

q

(
dσ

dΩ′

)

Rutherford
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× 1

4 π2 ωk

(
e2

h̄ c

) ∑

α

∣∣∣∣
h̄ ǫ̂α(k) . ( q′ − q )

m c

∣∣∣∣
2

(1223)

where the second factor is the probability of emitting a photon with energy h̄ ωk
into solid angle dΩk. On summing over the polarization α and integrating over
the directions of the emitted photon, one obtains

(
d2σ

dΩ′ dωk

)

Brehmse
=

q′

q

(
2 m Z e2

h̄2 | q − q′ |2
)2

× 2

3 π ωk

(
e2

h̄ c

) ∣∣∣∣
h̄ ( q′ − q )

m c

∣∣∣∣
2

(1224)

Hence, the scattering rate which includes the emission of a photon of energy
h̄ ωk is given by the product of the Rutherford scattering rate with a factor

q′

q

2

3 π ωk

(
e2

h̄ c

) (
2 q h̄ sin θ′

2

m c

)2

(1225)

This particular factorization of the cross-section involving the simultaneous
emission of a soft photon is common to many processes involving the emis-
sion of low-energy bosons. The soft-photon theorem82 shows that properties of
the emitted low-energy photon is insensitive to anything except the global prop-
erties (such as the total charge or total magnetic moment) of the scattered par-
ticle. The cross-section involving the emission of a low-energy photon diverges
as ωk → 0, due to the factor of ω−1

k in eqn(1224). This type of divergence
is an infrared divergence. What this implies is that, in Brehmstrahlung, arbi-
trary large numbers of low-energy photons are emitted. Furthermore, similar
singularities are also found in the ω = 0 limit when elastic scattering correc-
tions to the Rutherford scattering process are considered83. In any experiment
with finite energy resolution, elastic scattering and very low-energy quasi-elastic
scattering processes cannot be distinguished, so it is might be expected that the
elastic scattering and quasi-elastic scattering divergences should be combined.

The divergences found in the problem of Brehmstrahlung were first con-
sidered by Bloch and Nordsieck84 who showed that the infra-red divergences
cancel. That is, the infra-red divergence does not exist85. The cancelation
was achieved adding virtual emission processes for Rutherford scattering to the
Brehmstrahlung cross-section for the emission of photons of energy less than
ω0, since these processes cannot be distinguished for sufficiently small photon

82F. F. Low, Phys. Rev. 96, 1428 (1958).
83R. H. Dalitz, Proc. Roy. Soc. A 206, 509 (1950).
84F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).
85Since there are an infinite number of low-energy photons present in Brehmstrahlung, then

it is expected that the classical limit of quantum theory applies so that classical electromag-
netic theory should produce exact results.
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frequencies ω0. That is, on introducing an infra-red cut-off λ−, one finds that
the total inelastic scattering in which a photon with frequency less than ω0 is
emitted is given by

(
dσ

dΩ

)

Brehmse
=

(
dσ

dΩ

)

Rutherford

[
1

2 π

(
e2

h̄ c

) (
A ln

2 ω0 λ−
c

+ . . .

)
+ . . .

]

(1226)
where the factor A depends on the initial and final momentum of the electron.
This result is logarithmically divergent as λ− → 0. On the other hand, to the
same order, the elastic scattering cross-section is found as

(
dσ

dΩ

)

Elastic
=

(
dσ

dΩ

)

Rutherford

[
1 +

1

2 π

(
e2

h̄ c

) (
A ln

h̄

λ− m c
+ . . .

)
+ . . .

]

(1227)
Hence, on combining the results, one finds that the quasi-elastic scattering cross-
section is given by

(
dσ

dΩ

)

Quasi-Elastic
=

(
dσ

dΩ

)

Rutherford

[
1 +

1

2 π

(
e2

h̄ c

) (
A ln

2 h̄ ω0

m c2
+ . . .

)
+ . . .

]

(1228)
so the cut-off λ− cancels and the scattering cross-section does not diverge log-
arithmically. With this reasoning, Bloch and Nordsieck found that the appro-

priate expansion parameter is not e2

h̄ c
but instead is given by e2

h̄ c
ln h̄ ω0

m c2
. The

higher-order perturbations may also describe processes involving larger numbers
of emitted soft photons and results in a multiplicative exponential factor to the
quasi-elastic scattering rate

(
dσ

dΩ

)

Quasi-Elastic
≈
(
dσ

dΩ

)

Rutherford
exp

[
1

2 π

(
e2

h̄ c

)
B ln

2 h̄ ω0

m c2
+ . . .

]

(1229)
Therefore, the scattering rate from soft photons vanishes in the limit ω0 → 0.
This occurs because perturbation theory causes the normalization of the starting
approximate wave function to change, and hence the probabilities of the vari-
ous processes are changed by including higher-order processes. In other words,
since the probability of emitting an arbitrarily large number of soft-photons is
finite, the probability of emitting either zero or any fixed number of soft photons
must be zero. Bloch and Nordsieck’s calculation was restricted to the case of
emission of sufficiently low-energy photons. Pauli and Fierz86 also considered
Brehmstrahlung in a non-relativistic approximation. Pauli and Fierz showed
that the infra-red divergences, discussed above, cancel. Pauli and Fierz went on
to examine the remaining ultra-violet divergences, and showed that portions of
the ultra-violet infinities that were found in the calculations of the scattering
processes could be associated with mass renormalization. Using a relativistic
theory Ito, Koba and Tomonaga87 showed that the remaining infinities could

86W. Pauli and M. Fierz, Nuovo Cimento, 15, 167 (1938).
87D. Ito, Z. Koba and S-I. Tomonaga, Prog. Theor. Phys. (Kyoto), 3, 276 (1948).
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be absorbed into a renormalization of the electron charge. Similar conclusions
were arrived at by Lewis88 and by Epstein89. Dyson90 showed that all infinities
that appear in Quantum Electrodynamics could be cured by renormalization to
arbitrarily high-orders in perturbation theory.

12 The Dirac Equation

In 1928, Dirac searched for a relativistically invariant form of the one-particle
Schrödinger equation for electrons

i h̄
∂

∂t
ψ = Ĥ ψ (1230)

Since this equation is only first-order in time, then the solution is uniquely
specified by the initial condition for ψ. It is essential to only require an evolution
equation which is first-order in time. Dirac91 searched for a set of coupled first-
order (in time) equations for a multi-component wave function ψ

ψ =




ψ(0)

ψ(1)

...

ψ(N−1)




(1231)

The wave function was assumed to satisfy an equation of the form

[
i
h̄

c

∂

∂t
− α . p̂

]
ψ = β m c ψ

[
i
h̄

c

∂

∂t
+ i h̄ α . ∇

]
ψ = β m c ψ (1232)

The equations have to be of this form since, if the equation is a first-order partial
differential equation in time then it must also only involve the first-order partial
derivatives with respect to the spatial components for the resulting equation to
be relativistically covariant. The wave function ψ is a N -component (column)
wave function and the three as yet unknown components of α and β are three
N × N matrices. Since the Hamiltonian is the generator of time translations,
then Ĥ should be equivalent to ih̄ ∂

∂t
. Hence, as the Hamiltonian operator Ĥ

must be Hermitean, then the operators α and β must be Hermitean matrices.

88H. W. Lewis, Phys. Rev. 73, 173 (1948).
89Saul T. Epstein, Phys. Rev. 73, 177 (1948).
90F. J. Dyson, Phys. Rev. 75, 486 (1949).
91P. A. M. Dirac, Proc. Roy. Soc. A 117, 610 (1928).

P. A. M. Dirac, Proc. Roy. Soc. A 118, 351 (1928).
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This set of equations is required to yield the dispersion relation for a relativistic
particle (

E

c

)2

− p2 = m2 c2 (1233)

which, following the ordinary rules of quantization, leads to the Klein-Gordon
equation [

− h̄2

c2
∂2

∂t2
+ h̄2 ∇2

]
ψ = m2 c2 ψ (1234)

(which is a second-order partial differential equation in time). The requirement
that the Dirac equation is compatible with the Klein-Gordon equation imposes
conditions on the form of the matrices. On writing the Dirac equation as

i
h̄

c

∂ψ

∂t
=

(
β m c − i h̄ α . ∇

)
ψ (1235)

and iterating, one has

−
(
h̄

c

)2
∂2ψ

∂t2
=

(
β m c − i h̄ α . ∇

)2

ψ

=

(
β2 m2 c2 − i h̄ m c ( β α + α β ) . ∇

− h̄2 ( α . ∇ )2
)
ψ (1236)

When expressed in terms of individual matrices α(j), the above equation be-
comes

−
(
h̄

c

)2
∂2ψ

∂t2
=

(
β2 m2 c2 − i h̄ m c

∑

j

( β α(j) + α(j) β ) ∇j

− h̄2

2

∑

i,j

( α(i) α(j) + α(j) α(i) ) ∇i ∇j

)
ψ (1237)

since the derivatives commute. If the above equation is to be equivalent to the
Klein-Gordon equation, then the coefficients of the various derivatives must be
identical for both equations. Therefore, it is required that the constant terms
are equal

β2 = Î (1238)

It is also required that the first-order derivative terms vanish and that the
second-order derivative terms should be equal, hence the matrices must satisfy
the anti-commutation relations

α(i) β + β α(i) = 0

α(i) α(j) + α(j) α(i) = 2 δi,j Î (1239)
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On imposing the above conditions, Dirac’s form of the relativistic Schrödinger
equation is compatible with the Klein-Gordon equation.

From eqn(1238), one concludes that if the Hermitean matrices are brought to
diagonal form then the diagonal elements are given by ± 1. The possible dimen-
sions N of the matrix can be determined by considering the anti-commutation
relations. On taking the determinant of eqn(1239), one finds

detα(i) detβ = ( −1 )N detβ detα(i)

detα(i) detα(j) = ( −1 )N detα(j) detα(i) (1240)

Hence, on cancelling the common factors of determinants, one finds

( − 1 )N = 1 (1241)

so N must be even. Furthermore, the matrices must be traceless. This can be
seen by considering

α(i) α(j) = − α(j) α(i) (1242)

which on multiplying by α(i), yields the relation

α(j) = − α(i) α(j) α(i)

α(j) = − ( α(i) )−1 α(j) α(i) (1243)

since α(i) is its own inverse. Apart from the negative sign, the form of the
left-hand side is of the form of an equivalence transformation. By using cyclic
invariance, it can be shown that the trace of a matrix is invariant under equiv-
alence transformations. Therefore, one has

Trace α(i) = − Trace α(i) (1244)

or
Trace α(i) = 0 (1245)

which proves that the matrices are traceless.

Since the Dirac matrices satisfy

β2 = Î

(α(i))2 = Î (1246)

then their eigenvalues must all be ±1, as can be seen by operating on the
eigenvalue equation

β φβ = λβ φβ (1247)

with β. This process yields

β2 φβ = λβ β φβ

= λ2
β φβ (1248)
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which with β2 = Î, requires that the eigenvalues must satisfy the equation

λ2
β = 1 (1249)

This and the condition that the matrices are traceless implies that the set of
eigenvalues of each matrix are composed of equal numbers of +1 and −1, and
it also confirms the conclusion that dimension N of the matrices must be even.
The smallest value of the dimension for which there is a representation of the
matrices is N = 4. The smallest even value of N , N = 2 cannot be used since
one can only construct three linearly independent anti-commuting 2 × 2 ma-
trices92. These three matrices are the Pauli spin matrices σ(j). Hence, Dirac
constructed the relativistic theory with N = 4.

It is useful to find a representation in which the mass term is diagonal, since
this represents the largest energy which occurs in the non-relativistic limit.
When diagonalized, the β matrix has two eigenvalues of +1 and two eigenvalues
of −1 and so β can be expressed in 2× 2 block-diagonal form. We shall express
the 4 × 4 matrices in the form of 2 × 2 block matrices. In this case, one can
represent the matrix in the block-diagonal form

β =

(
I 0
0 −I

)
(1250)

If the three matrices α(i) are to anti-commute with β and be Hermitean, they
must have the off-diagonal form

α(i) =

(
0 A(i)

A(i)† 0

)
(1251)

where A(i) is an arbitrary 2× 2 matrix. We shall choose all three A(i) matrices
to be Hermitean. Since the three α(i) matrices must anti-commute with each
other, the A(i) must also anti-commute with each other. Since the three Pauli
matrices are mutually anti-commuting, one can set

α(i) =

(
0 σ(i)

σ(i) 0

)
(1252)

where the σ(i) and I are, respectively, the 2 × 2 Pauli matrices and the 2 × 2
unit matrix. The Pauli matrices are given by

σ(1) =

(
0 1
1 0

)
(1253)

92In d + 1 space-time dimensions, one can form 2d+1 matrices from products of the set of
d+1 linearly independent (anti-commuting) Dirac-matrices. We shall assume that the product
matrices are linearly independent. Since the number of linearly independent N ×N matrices
is N2, the minimum dimension N which will yield a representation of the Dirac-matrices is

N = 2
d+1
2 .
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σ(2) =

(
0 −i
i 0

)
(1254)

and

σ(3) =

(
1 0
0 −1

)
(1255)

The matrix α(0) is defined as the 4 × 4 identity matrix

α(0) =

(
I 0
0 I

)
(1256)

This set of matrices form a representation of the Dirac matrices. This can
be seen by directly showing that they satisfy the appropriate relations. Many
different representations of the Dirac matrices can be found, but they are all
related by equivalence transformations and the physical results are independent
of which choice is made.

Exercise:

By direct matrix multiplication, show that the above matrices satisfy the
relations

( α(j) )2 = β2 = Î (1257)

and the anti-commutation relations

α(i) β + β α(i) = 0

α(i) α(j) + α(j) α(i) = 2 δi,j Î (1258)

and so form a representation of the Dirac matrices.

12.1 Conservation of Probability

One can find a conservation law for Dirac’s equation

i h̄
∂ψ

∂t
=

(
− i h̄ c α . ∇ + β m c2

)
ψ (1259)

On pre-multiplying the Dirac equation by ψ†, which is the Hermitean conjugate
of the spinor wave function and is defined as the row vector formed by the
complex conjugate of the components

ψ† =

(
ψ(0)∗ , ψ(1)∗ , ψ(2)∗ , ψ(3)∗

)
, (1260)

one obtains

i h̄ ψ† ∂ψ

∂t
=

(
− i h̄ c ψ† α . ∇ ψ + ψ† β ψ m c2

)
(1261)
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The Hermitean conjugate of the Dirac equation is given by

− i h̄
∂ψ†

∂t
=

(
+ i h̄ c ∇ . ψ† α† + ψ† β† m c2

)
(1262)

Since α and β are Hermitean matrices, the Hermitean conjugate equation sim-
plifies to

− i h̄
∂ψ†

∂t
=

(
+ i h̄ c ∇ . ψ† α + ψ† β m c2

)
(1263)

Post-multiplying the Hermitean conjugate equation by the column-vector ψ,
yields

− i h̄
∂ψ†

∂t
ψ =

(
+ i h̄ c ∇ . ψ† α ψ + ψ† β ψ m c2

)
(1264)

On subtracting eqn(1264) from the eqn(1261) and combining terms, one obtains

i h̄
∂

∂t
( ψ† ψ ) = − i h̄ c ∇ . ( ψ† α ψ ) (1265)

The above equation has the form of a continuity equation

∂ρ

∂t
+ ∇ . j = 0 (1266)

in which the probability density is given by

ρ = ψ† ψ (1267)

Using the rules of matrix multiplication the probability density is a real scalar
quantity, which is given by the sum of squares

ρ = | ψ(0) |2 + | ψ(1) |2 + | ψ(2) |2 + | ψ(3) |2 (1268)

and so it is positive definite. Hence, unlike the Klein-Gordon equation, the
Dirac equation does not lead to negative probability densities. The probability
current density j is given by

j = c ψ† α ψ (1269)

In this case, the total probability

Q =

∫
d3x ψ† ψ =

∫
d3x ρ (1270)

is conserved, since

dQ

dt
=

∫
d3x

∂ρ

∂t

= −
∫

d3x ∇ . j

= −
∫

d2S . j (1271)
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where Gauss’s theorem has been used to represent the volume integral as surface
integral. For a sufficiently large volume, the current at the boundary vanishes,
hence the total probability is conserved

dQ

dt
= 0 (1272)

12.2 Covariant Form of the Dirac Equation

In the absence of an electromagnetic field, the Dirac equation can be expressed
in either of the two forms

αµ p̂µ ψ = β m c ψ

i h̄ αµ ∂µ ψ = β m c ψ (1273)

where it has been recalled that

α(0) = Î (1274)

and the covariant momentum operator is given by

p̂µ = i h̄

(
∂

∂xµ

)
(1275)

Or equivalently, after multiplying the Dirac equation by β and then introducing
the four γ matrices via

γµ = β αµ (1276)

one finds that the Dirac equation appears in the alternate forms

γµ p̂µ ψ = m c ψ

i h̄ γµ ∂µ ψ = m c ψ (1277)

The four gamma matrices satisfy the anti-commutation relations

γµ γν + γν γµ = 2 gµ,ν Î (1278)

where Î is the 4 × 4 identity matrix, and gµ,ν is the Minkowski metric. The
gamma matrices labelled by the spatial indices are Unitary and anti-Hermitean,
as shall be proved below.

It is easy to show that the matrix with the temporal index (0) is unitary
and Hermitean

( γ(0) )−1 = γ(0)

( γ(0) )† = γ(0) (1279)

since β is its own inverse and β is Hermitean.
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The gamma matrices with spatial indices are anti-Hermitean as

( γ(i) )† = ( β α(i) )†

= ( ( α(i) )† β† )

= ( α(i) β )

= ( − β α(i) )

= − γ(i) (1280)

since α(i) and β are Hermitean and, in the fourth line the operators have been
anti-commuted. Now, the gamma matrices with spatial indices can be shown
to be unitary since

γ(i) γ(i) = β α(i) β α(i)

= − β β α(i) α(i)

= − Î (1281)

where, in obtaining the second line, the anti-commutation properties of α(i) and
β have been used, and the property

( α(i) )2 = β2 = Î (1282)

was used to obtain the last line. Since it has already been demonstrated that
the spatial matrices are anti-Hermitean

( γ(i) )† = − γ(i) (1283)

then it follows that γ(i) is unitary as

( γ(i) )† γ(i) = Î (1284)

which completes the proof.

The continuity equation can also be expressed in a covariant form. The

covariant Dirac adjoint of ψ is defined as ψ
†

where

ψ
†

= ψ† γ(0) (1285)

Hence, since
( γ(0) )2 = Î (1286)

the Hermitean conjugate wave function ψ† can be expressed in terms of the

adjoint spinor ψ
†

via

ψ† = ψ
†
γ(0) (1287)

The continuity equation has the Lorentz covariant form

∂jµ

∂xµ
= 0 (1288)
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where the four-vector conserved probability current jµ is given by

jµ = c ψ† αµ ψ (1289)

By using the definition of the Dirac adjoint, the current density can be re-
expressed as the four quantities

j(0) = c ψ
†
γ(0) ψ

j(i) = c ψ
†
γ(i) ψ (1290)

that, respectively, represent c times the probability density and the j(i) are the
contravariant components of the probability current density.

12.3 The Field Free Solution

In the absence of fields, the Dirac equation can be solved exactly by assuming
a solution in the form of plane-waves. This is because the momentum operator
p̂ commutes with the Hamiltonian Ĥ since in the absence of fields there is no
explicit dependence on position. The solution can be expressed as a momentum
eigenstate in the form

ψ =




u(0)

u(1)

u(2)

u(3)


 exp

[
− i kµ x

µ

]
(1291)

where the functions uµ(k) are to be determined. On substituting this form in
the Dirac equation, it becomes an algebraic equation of the form

(
k(0) Î − k . α − (

m c

h̄
) β

)
ψ = 0 (1292)

where k is a three-vector with components given by the contra-variant spa-
tial components of kµ. In order to write this equation in two by two block-
diagonal form, the four-component spinor ψ can be written in terms of two
two-components spinors

ψ =

(
φA

φB

)
(1293)

where the two two-component spinors are given by

φA =

(
u(0)

u(1)

)

φB =

(
u(2)

u(3)

)
(1294)
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Hence, the Dirac equation can be expressed as the block-diagonal matrix equa-
tion




(
− k(0) + m c

h̄

)
I k . σ

k . σ

(
− k(0) − m c

h̄

)
I



(

φA

φB

)
= 0 (1295)

where the three-vector scalar product involves the contra-variant components
of the momentum k(i) with the Pauli spin matrices σ(i). The above equation
is an eigenvalue equation for k(0). The eigenvalues are given by the solution of
the secular equation

∣∣∣∣∣

(
− k(0) + m c

h̄

)
I k . σ

k . σ

(
− k(0) − m c

h̄

)
I

∣∣∣∣∣ = 0 (1296)

which can be written as

(
k(0)2 −

(
m c

h̄

)2 )
=

(
σ . k

)2

(1297)

Using Pauli’s identity

(
σ . A

) (
σ . B

)
=

(
A . B

)
I + i σ .

(
A ∧ B

)
(1298)

one finds the energy eigenvalues are given by the doubly-degenerate dispersion
relations

k(0) = ±
√ (

m c

h̄

)2

+ k2 (1299)

Thus, the field free relativistic electron can have positive and negative-energy
eigenvalues given by

E = ±
√

m2 c4 + p2 c2 (1300)

Since the solutions are degenerate, solutions can be found that are simultaneous
eigenvalues of the Hamiltonian Ĥ given by

Ĥ =

(
m c2 I − i h̄ c σ . ∇

− i h̄ c σ . ∇ − m c2 I

)
(1301)

and another operator that commutes with Ĥ. It is convenient to choose the
second operator to be the helicity operator.

The helicity operator Σ̂ corresponds to the projection of the electron’s spin
along the direction of momentum. The (un-normalized) helicity operator is
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Σk = +1 Σk = −1

Figure 44: A cartoon depicting the two helicity states of a spin one-half particle.

given by

Σ̂ = − i h̄

(
σ . ∇ 0

0 σ . ∇

)
(1302)

This is the appropriate relativistic generalization of spin valid only for free
particles93, as the helicity is a conserved quantity since

[ Ĥ , Σ̂ ] = 0 (1303)

In the absence of electromagnetic fields, the Hamiltonian is evaluated as

Ĥ(k) =

(
m c2 I h̄ c σ . k
h̄ c σ . k − m c2 I

)
(1304)

Likewise, for the source free case, the properly normalized Helicity operator is
found as

Λ(k) =

(
σ . k̂ 0

0 σ . k̂

)
(1305)

which has eigenvalues of ±1.

The axis of quantization of σ will be chosen to be along the direction of
propagation k̂. In this case, the helicity operator becomes

Λ(k) =

(
σ(3) 0
0 σ(3)

)
(1306)

and the eigenstates of helicity with eigenvalue +1 are composed of a linear
superposition of the spin-up eigenstates. We shall represent the two-component
spinors φA+ via

φA+ = u(0) χ+

= u(0)

(
1
0

)
(1307)

93Helicity is not conserved for spherically symmetric potentials. However, if only a time-
independent vector potential is present, the generalized quantity

Σ̂ = σ . ( p̂−
q

c
A )

is conserved. This conservation law implies that the spin will always retain its alignment with
the velocity.
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and φB+ as

φB+ = u(2) χ+

= u(2)

(
1
0

)
(1308)

Therefore, one has

ψ+(x) =

(
u(0) χ+

u(2) χ+

)
exp

[
− i kµ x

µ

]
(1309)

Likewise, for the negative helicity states, φA− can be represented via

φA− = u(1) χ−

= u(1)

(
0
1

)
(1310)

and φB+ as

φB− = u(3) χ−

= u(3)

(
0
1

)
(1311)

Thus, the eigenstates with helicity −1 are the spin-down eigenstates

ψ−(x) =

(
u(1) χ−
u(3) χ−

)
exp

[
− i kµ x

µ

]
(1312)

Clearly, states with different helicities are orthogonal since

χ†
Λ′ χΛ = δΛ,Λ′ (1313)

which is as it should be since they are eigenstates of a Hermitean operator.

On substituting the helicity eigenstates ψΛ into the Dirac equation for the
free spin one-half particle

i h̄
∂

∂t
ψΛ = Ĥ ψΛ (1314)

one finds

E

(
φAΛ
φBΛ

)
=

(
m c2 σ(3) c h̄ k(3)

σ(3) c h̄ k(3) − m c2

) (
φAΛ
φBΛ

)
(1315)

Therefore, the complex amplitudes φAΛ and φBΛ are found to be related by

φBΛ =
σ(3) c h̄ k(3)

E + m c2
φAΛ (1316)
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This equation shows that the components φBΛ are small for the positive-energy
solutions, whereas the complementary expression

φAΛ = − σ(3) c h̄ k(3)

m c2 − E
φBΛ (1317)

shows that φAΛ is small for the negative-energy solutions. Hence, the two
positive-energy and two negative-energy (un-normalized) solutions of the Dirac
equation can be written as

ψ+(x) = Ne




χ+

c h̄ k(3)

E + m c2
χ+


 exp

[
− i kµ x

µ

]
(1318)

for helicity +1 and

ψ−(x) = Ne




χ−

− c h̄ k(3)

E + m c2
χ−


 exp

[
− i kµ x

µ

]
(1319)

for helicity -1. In this expression Ne is a normalization factor.

The normalization condition is
∫

d3r ψ† ψ = 1 (1320)

which determines the magnitude of the normalization constant through

1 = V Ne
2

(
1 +

c2 h̄2 k2

( E + m c2 )2

)

= V Ne
2

(
E2 + 2 E m c2 + m2 c4 + c2 h̄2 k2

( E + m c2 )2

)

= V Ne
2

(
2 E2 + 2 E m c2

( E + m c2 )2

)

= V Ne
2

(
2 E

E + m c2

)

Hence, the normalization constant can be set as

Ne =

√
E + m c2

2 E V
(1321)

for positive E.

For states with negative energies,

E = −
√

m2 c4 + c2 h̄2 k2 (1322)
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the lower components are the large components. In this case, it is more conve-
nient to express the negative-energy solutions as

ψ+(x) = Np




− c h̄ k
m c2 − E

χ+

χ+


 exp

[
− i kµ x

µ

]
(1323)

for helicity +1 and

ψ−(x) = Np




c h̄ k
m c2 − E

χ−

χ−


 exp

[
− i kµ x

µ

]
(1324)

for helicity -1. Furthermore, in this expression the normalization constant has
the form

Np =

√
m c2 − E

− 2 E V
(1325)

Hence, the positive and negative-energy solutions are symmetric under the in-
terchange E → − E, if Λ → − Λ and the upper and lower two-component
spinors (φA, φB) are interchanged.

General Helicity Eigenstates

The Helicity operator for a particle with a momentum h̄ k is given by the
Hermitean operator

Λ(k) =
1

k




k(3) k(1) − i k(2)

k(1) + i k(2) − k(3)




=




cos θk sin θk exp[−iϕk]

sin θk exp[+iϕk] − cos θk


 (1326)

which since
Λ(k) Λ(k) = I (1327)

has eigenvalues Λ of ±1. The helicity eigenstates94 are given by the two-
component spinors χΛ± . The positive helicity state is given by

χΛ+ =
1√

2 k ( k − k(3) )




k(1) − i k(2)

k − k(3)




= exp[ − i
ϕk
2

]




cos θk

2 exp[−iϕk

2 ]

sin θk

2 exp[+iϕk

2 ]


 (1328)

94C. G. Darwin, Proc. Roy. Soc. A 118, 654 (1928).
C. G. Darwin, Proc. Roy. Soc. A 120, 631 (1928).
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in which (k, θk, ϕk) are the polar coordinates of k. The negative helicity eigen-
state is given by the spinor χΛ−

χΛ− =
1√

2 k ( k − k(3) )




− k + k(3)

k(1) + i k(2)




= exp[ + i
ϕk
2

]




− sin θk

2 exp[−iϕk

2 ]

cos θk

2 exp[+iϕk

2 ]


 (1329)

Therefore, the general helicity eigenstate plane-wave solutions of the Dirac equa-
tion can be written in terms of two two-component spinors as

ψΛ±(x) = Ne




χΛ±

c h̄ k Λ±

E + m c2
χΛ±


 exp

[
− i kµ x

µ

]
(1330)

In this expression Ne is a normalization factor

Ne =

√
E + m c2

2 E V
(1331)

These plane-wave solutions are useful in considerations of scattering processes.

12.4 Coupling to Fields

The Dirac equation describes relativistic spin one-half fermions, and their anti-
particles. It describes all massive leptons such as the electron, muon and tao
particle, and can be generalized to describe their interaction with the electro-
magnetic field, or its generalization the electro-weak field. In the limit m → 0,
the Dirac equation reduces to the Weyl equation95 which describes neutrinos.
The Dirac equation also describes massive quarks and the interaction can be
generalized to quantum chromodynamics.

In the absence of interactions, the Dirac equation can be expressed in either
of the two forms

αµ p̂µ ψ = β m c ψ

i h̄ αµ ∂µ ψ = β m c ψ (1332)

The interaction with electromagnetic field is introduced as follows. Using the
minimal coupling approximation, where

p̂µ → p̂µ
′ = p̂µ − q

c
Aµ (1333)

95H. Weyl, Z. Physik, 56, 330 (1929).
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and q is the charge of the particle, the Dirac equation in the presence of an
electromagnetic field becomes

αµ
(
p̂µ − q

c
Aµ

)
ψ = β m c ψ

i h̄ αµ
(
∂µ + i

q

h̄ c
Aµ

)
ψ = β m c ψ (1334)

This process has resulted in the inclusion of the interaction with the electro-
magnetic field in a gauge invariant, Lorentz covariant manner. The appearance
of the gauge field together with the derivative results in local gauge invariance.
Sometimes it is convenient to define a covariant derivative as the gauge-invariant
combination

Dµ ≡ ∂µ + i
q

h̄ c
Aµ (1335)

The concept of the covariant derivative also appears in the context of other
gauge field theories. Using this definition we can express the Dirac equation in
the presence of an electromagnetic field in the compact covariant form

i h̄ γµ Dµ ψ = m c ψ (1336)

The presence of an electromagnetic field does not alter the form of the conserved
four-vector current

jµ = c ψ
†
γµ ψ (1337)

which is explicitly gauge invariant.

12.4.1 Mott Scattering

We shall consider the scattering of positive-energy electrons from a nucleus of
charge Z. The initial electron beam has momentum h̄ k which is scattered by
the target nucleus. The detector is positioned so that it detects all the scattered
electrons with momentum h̄ k′. The initial and final states of the positive-energy
electron can be represented by the Dirac spinors of the form ψσ

ψk,σ(x) = Nk




χσ

c h̄ k . σ

Ek + m c2
χσ


 exp

[
− i kµ x

µ

]
(1338)

where the normalization constant is chosen as

Nk =

√
Ek + m c2

2 Ek V
(1339)

The interaction Hamiltonian with the electrostatic field of the nucleus is given
by the diagonal matrix

ĤInt = − Z e2

r

(
I 0
0 I

)
(1340)
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The flux of incident electrons is defined by

F =
| v |
V

(1341)

where

v =

(
∂E

∂p

)
(1342)

Therefore, the electron flux is given by

F =

(
h̄ k c2

V Ek

)
(1343)

The elastic scattering cross-section in which the final state polarization is un-
measured is given by
(
dσ

dΩ′

)
=

1

( 2 π )2

(
Ek V

2

h̄2 k c2

) ∑

σ′

∫ ∞

0

dk′ k′2 | < k′σ′ | ĤInt | k, σ > |2 δ( Ek − Ek′ )

(1344)
where the delta function ensures conservation of energy. Since the polarization
of the final state electron is unmeasured, the spin σ′ is summed over. The
integration over k′ can be performed, yielding

(
dσ

dΩ′

)
=

(
E V

2 π h̄2 c2

)2 ∑

σ′

| < k′σ′ | ĤInt | k, σ > |2 (1345)

where k and k′ are restricted to be on the energy shell (E = Ek = Ek′). The
matrix elements can then be evaluated as

< k′, σ′ | ĤInt | k, σ > = −
(

4 π Z e2

V | k − k′ |2
) (

E + m c2

2 E V

)

× χTσ′

(
I +

c2 h̄2 ( σ . k′ ) ( σ . k )

( E + m c2 )2

)
χσ

(1346)

where the normalization constants have been combined, since energy is con-
served. Likewise, the complex conjugate matrix elements are given by

< k, σ | ĤInt | k′, σ′ > = −
(

4 π Z e2

V | k − k′ |2
) (

E + m c2

2 E V

)

× χTσ

(
I +

c2 h̄2 ( σ . k ) ( σ . k′ )

( E + m c2 )2

)
χσ′

(1347)

These expressions for the matrix elements are inserted into the scattering cross-
section. Since the final state polarization is not detected, then σ′ must be
summed over. The trace over σ′ is evaluated by using the completeness relation

∑

σ′

χσ′ χTσ′ = I (1348)
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The resulting matrix elements involve the spin-dependent factor

χTσ

(
I +

c2 h̄2 ( σ . k ) ( σ . k′ )

( E + m c2 )2

) (
I +

c2 h̄2 ( σ . k′ ) ( σ . k )

( E + m c2 )2

)
χσ

(1349)

The products of matrix elements shown above can be evaluated with the aid of
the Pauli identity. The sum of the cross-terms can be evaluated directly using
the Pauli identity. We note that since the vector product are antisymmetric in
k and k′, the sum of the vector product terms cancel. That is

c2 h̄2

( E + m c2 )2

[
( σ . k ) ( σ . k′ ) + ( σ . k′ ) ( σ . k )

]

=
c2 h̄2

( E + m c2 )2
2 ( k . k′ ) Î (1350)

The remaining term is evaluated by using the Pauli identity for the inner two
scalar products, and then re-using the identity for the outer two scalar products.
Explicitly, this process yields

c4 h̄4

( E + m c2 )4

[
( σ . k ) ( σ . k′ ) ( σ . k′ ) ( σ . k )

]

=
c4 h̄4

( E + m c2 )4
k′2 k2 Î (1351)

Hence, the cross-section is given by

(
dσ

dΩ′

)
=

(
Z e2

h̄2 c2 | k − k′ |2
)2 [

( E +m c2 )2 + 2 c2 h̄2 k . k′ +
c4 h̄4 k2 k′2

( E + m c2 )2

]

(1352)
It should be noted that the last two terms originated from the combined action
of the Pauli spin operators and involved the lower two-component spinors. The
last term can be simplified by using the elastic scattering condition k = k′ and
then using the identity

c4 h̄4 k4 = ( E2 − m2 c4 )2 (1353)

in the numerator. On canceling the factor of ( E + m c2 )2 in the denominator of
the last term with a similar factor in the numerator, the last term is recognized
as being just ( E − m c2 )2. Hence, on combining the first and last terms, one
finds the result
(
dσ

dΩ′

)
=

(
Z e2

h̄2 c2 | k − k′ |2
)2 [

2 ( E2 + m2 c4 ) + 2 c2 h̄2 k . k′
]

(1354)

The scattering angle θ′ is introduced in the square parenthesis through

k . k′ = k2 cos θ′ (1355)
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and also in the denominator of the Coulomb interaction by

| k − k′ |2 = 4 k2 sin2 θ
′

2
(1356)

Furthermore, the factor of m2 c4 in the square parenthesis can be replaced by

m2 c4 = E2 − c2 h̄2 k2 (1357)

so that the cross-section takes the form

(
dσ

dΩ′

)
=

(
Z e2

2 h̄2 c2 k2 sin2 θ′

2

)2 [
E2 − c2 h̄2 k2 sin2 θ

′

2

]

=

(
2 Z e2 E

4 h̄2 c2 k2 sin2 θ′

2

)2 [
1 −

(
v

c

)2

sin2 θ
′

2

]
(1358)

where the expression for the magnitude of the velocity

v2 =

(
c2 h̄ k

E

)2

(1359)

has been introduced. The above result is the Mott scattering cross-section96,
which describes the scattering of charged electrons. It differs from the Ruther-
ford scattering cross-section due to the multiplicative factor of relativistic origin,
which deviates from unity due to the electron’s internal degree of freedom. The
extra contribution to the scattering is interpreted in terms of scattering from the
magnetic moment associated with the electron’s spin interacting with the mag-
netic field of the nuclear charge that the electron experiences in its rest frame.
It should be noted that even if the initial beam of electrons is un-polarized, the
scattered beam will be partially spin-polarized (due to higher-order corrections).

12.4.2 Maxwell’s Equations

Maxwell’s equations can be written in the form of the Dirac equation. We
introduce a four-component wave function ψ given by

ψ =




0
B(1) − iE(1)

B(2) − iE(2)

B(3) − iE(3)


 (1360)

Maxwell’s equations can be written in the form

i αµ ∂µψ = − 4 π

c
j (1361)

96N. F. Mott, Proc. Roy. Soc. A 124, 425 (1929).
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where j is the contravariant form of the current four-vector

j =




c ρ
j(1)

j(2)

j(3)


 (1362)

We shall require that the matrices αµ are Hermitean and that they satisfy the
equation

( αµ )2 = Î (1363)

On comparing with the form of Maxwell’s equations97, one finds that the Ma-
trices are given by

α(0) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (1364)

α(1) =




0 −1 0 0
−1 0 0 0
0 0 0 −i
0 0 i 0


 (1365)

α(2) =




0 0 −1 0
0 0 0 i
−1 0 0 0
0 −i 0 0


 (1366)

α(3) =




0 0 0 −1
0 0 −i 0
0 i 0 0
−1 0 0 0


 (1367)

The matrices corresponding to the spatial indices are traceless and satisfy the
anti-commutation relations

α(i) α(j) + α(j) α(i) = 2 δi,j (1368)

and
α(i) α(j) = i

∑

k

ξi,j,k α(k) (1369)

On pre-multiplying Maxwell’s equations in the form

i αµ ∂µψ = − 4 π

c
j (1370)

97Since the first element of ψ is zero, the first columns of the matrices are not determined
directly from the comparison. The first rows are determined by demanding that the matrices
are Hermitean.
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with the operator
i αν ∂ν (1371)

one obtains

− αν αµ ∂ν ∂µψ = − i
4 π

c
αν ∂νj (1372)

Utilizing the anti-commutation of the spatial matrices, the left-hand side sim-
plifies to

−
[

− ∂µ ∂
µ + 2

(
αν ∂ν

)
1

c

∂

∂t

]
ψ (1373)

On substituting the new form of Maxwell’s equations in the second term, the
expression reduces to

−
[

− ∂µ ∂
µ ψ + i

8 π

c2
∂

∂t
j

]
(1374)

Thus, the equation becomes

∂µ ∂
µψ = i

4 π

c

(
2

c

∂

∂t
− αν ∂ν

)
j (1375)

The zero-th component of the source term vanishes, due to conservation of
charge.

12.4.3 The Gordon Decomposition

The interaction of the Dirac particle with the electromagnetic field is described
by the interaction Hamiltonian which is described by the 4 × 4 matrix

ĤI =

(
q

c

)
c γ(0) γµ Aµ (1376)

The matrix interaction Hamiltonian operator yields an interaction Hamiltonian
density ĤI given by

ĤI =

(
q

c

)
c ψ

†
γµ ψ Aµ

=

(
q

c

)
jµ Aµ (1377)

where jµ is the four-vector probability current density which satisfies the con-
dition for conservation of probability. Due to the prominence of the current
density operator in applications of the Dirac equation, since it naturally de-
scribes interactions with an electromagnetic field and the conservation laws, the
physical content of the current densities shall be examined next.

In the presence of an electromagnetic field, the four-vector current density
is given by the expression

jν = c ψ
†
γν ψ (1378)
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where
ψ
†

= ψ† γ(0) (1379)

One can rewrite the current density by using the Dirac equation

i h̄ γµ
(
∂µ + i

q

h̄ c
Aµ

)
ψ = m c ψ (1380)

and the Hermitean conjugate equation

− i h̄

(
∂µ − i

q

h̄ c
Aµ

)
ψ† γµ† = m c ψ† (1381)

On symmetrizing the current density and then substituting the Dirac equation
in one term and its Hermitean conjugate in the other term, one obtains

jν =
c

2

(
ψ
†
γν ψ + ψ

†
γν ψ

)

=
i h̄

2 m

(
− ( ∂µ − i

q

h̄ c
Aµ )ψ† γµ† γ(0) γν ψ + ψ† γ(0) γν γµ ( ∂µ + i

q

h̄ c
Aµ )ψ

)

=
i h̄

2 m

(
− ( ∂µ − i

q

h̄ c
Aµ )ψ

†
γ(0) γµ† γ(0) γν ψ + ψ

†
γν γµ ( ∂µ + i

q

h̄ c
Aµ )ψ

)

(1382)

where the partial derivatives only operate on the wave function immediately to
the right of it. The identity

γ(0) γ(0) = Î (1383)

has been used to express ψ† in terms of ψ
†
. However, since the γ matrices

satisfy
γ(0) γµ† γ(0) = γµ (1384)

the current can be further simplified to yield

jν =
i h̄

2 m

(
− ( ∂µ − i

q

h̄ c
Aµ )ψ

†
γµ γν ψ + ψ

†
γν γµ ( ∂µ + i

q

h̄ c
Aµ )ψ

)

(1385)

where, once again, the partial derivative only operates on the wave function
immediately to the right of it. Furthermore, if one sets

1

2

(
γµ γν + γν γµ

)
= gµ,ν Î

1

2

(
γµ γν − γν γµ

)
= − i σµ,ν (1386)
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then the current density can be expressed as the sum of two contributions

jν = jνc + jνs

=
i h̄

2 m

(
− gµ,ν ( ∂µψ

†
ψ − ψ

†
∂µψ ) + 2 i

q

h̄ c
gµ,ν ψ† Aµ ψ

)

− h̄

2 m

∂

∂xµ

(
ψ
†
σµ,ν ψ

)
(1387)

where

jνc =
i h̄

2 m

(
− ( ∂νψ

†
ψ − ψ

†
∂νψ ) + 2 i

q

h̄ c
ψ
†
Aν ψ

)

jνs = − h̄

2 m

∂

∂xµ

(
ψ
†
σµ,ν ψ

)
(1388)

This is the Gordon decomposition98 of the probability current density. A similar
expression can be derived for the matrix elements of the interaction operator

between states ψ
†
β and ψα. As shall be shown, the first contribution in the Gor-

don decomposition is gauge invariant and dominates the current density in the
non-relativistic limit. The second contribution involves the matrix σµ,ν which
is anti-symmetric in its indices and has the form of a spin contribution to the
current density.

Let us examine the first term in the probability current density. If ψ repre-

sents an energy eigenstate, then j
(0)
c is given by

j(0)c =

(
E

m c

)
ψ
†
ψ − q

m c
ψ
†
A(0) ψ (1389)

This contribution obviously yields the main contribution to (c times) the prob-
ability density

j(0)c ≈ c ψ
†
ψ (1390)

in the non-relativistic limit since the rest mass energy dominates the energy

E ∼ m c2. The spatial components of j
(i)
c are given by

j
c

=
i h̄

2 m

[
( ∇ ψ

†
) ψ − ψ

†
( ∇ ψ )

]
− q

m c
ψ
†
A ψ (1391)

where the derivatives have been expressed as derivatives w.r.t. the contravariant
components x(i) of the position vector. This expression coincides with the full
non-relativistic expression for the current density j(i).

We now examine the second term jµs in the Gordon decomposition. For
future reference, the anti-symmetrized products of the Dirac matrices σµ,ν will

98W. Gordon, Zeit. für Physik, 50, 630 (1928).
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be expressed in 2 × 2 block diagonal form. Therefore, since

γ(0) =

(
I 0
0 −I

)

γ(i) =

(
0 σ(i)

−σ(i) 0

)
(1392)

and

σµ,ν =
i

2

(
γµ γν − γν γµ

)
(1393)

the matrices are found as

σ0,j = i

(
0 σ(j)

σ(j) 0

)
(1394)

and

σi,j =
∑

k

ξi,j,k
(
σ(k) 0
0 σ(k)

)
(1395)

The two by two block diagonal matrix of Pauli spin matrices will be denoted

by σ̂. For an energy eigenstate, the time component of j
(0)
s is identically zero.

Hence, the spatial components of j
(i)
s are given by

j
s

= − h̄

2 m
∇ ∧ ( ψ

†
σ̂ ψ ) (1396)

where σ̂ is the 2 × 2 block-diagonal Pauli spin matrix

σ̂ =

(
σ 0
0 σ

)
(1397)

The additional term in the current density clearly involves the Pauli spin-
matrices. To elucidate its meaning, its contribution to the energy shall be
examined. On substituting this term in the interaction Hamiltonian density,
one finds a contribution

Ĥspin
I = − q

c
j
s
. A

= +
q h̄

2 m c
A .

(
∇ ∧ ( ψ

†
σ̂ ψ )

)
(1398)

On integrating over space, the interaction Hamiltonian density gives rise to the
interactions contribution to the total energy. By integrating by parts, it can
be shown that this energy contribution is equivalent to the energy contribution
caused by an equivalent form of the interaction Hamiltonian density

Ĥspin
I ≡ − q h̄

2 m c
( ψ

†
σ̂ ψ ) . ( ∇ ∧ A )

≡ − q h̄

2 m c
( ψ

†
σ̂ ψ ) . B (1399)
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where B is the magnetic field. Hence, the interaction energy contains a term
which represents an interaction between the electron’s internal degree of free-
dom and the magnetic field.

12.5 Lorentz Covariance of the Dirac Equation

One goal of Physics is to write the laws in a manner which are independent
of any arbitrary choices that are made. Within special relativity, this implies
that the laws of Physics should be written in a way which is independent of
the choice of inertial reference frame. Dirac’s theory is Lorentz covariant if the
results are independent of the Lorentz frame used. To this end, it is required
that the Dirac equation in a Lorentz transformed frame of reference has the
same form as the Dirac equation in the original reference frame, and also that
the solutions of these two equations describe the same physical states. That is,
the two solutions must describe the same set of measurable properties in the
different reference frames, and therefore the results are simply related by the
Lorentz transformation.

The first step of the proof of the Lorentz covariance of the Dirac equation
requires that one should be able to show that under a Lorentz transformation
defined by

Aµ → Aµ′ = Λµν A
ν (1400)

then the Dirac equation is transformed from

γµ ( p̂µ − q

c
Aµ ) ψ = m c ψ (1401)

to an equation with an equivalent form

γµ′ ( p̂′µ − q

c
A′
µ ) ψ′ = m c ψ′ (1402)

Furthermore, the four components of the spinor wave function ψ′ are assumed
to be linearly related to the components of ψ by a four by four matrix R̂(Λ)
which is independent of xµ

ψ′(x′) = R̂(Λ) ψ(x) (1403)

Hence, the transformed Dirac equation can be re-written in terms of the un-
transformed spinor

γµ′ ( p̂′µ − q

c
A′
µ ) ψ′ = m c ψ′

γµ′ ( p̂′µ − q

c
A′
µ ) R̂(Λ) ψ = m c R̂(Λ) ψ (1404)

if such an R̂(Λ) exists. The γµ′ matrices must satisfy the same anti-commutation
relations as the γµ and, therefore, only differ from them by a similarity trans-
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formation99. The transformations of γµ′ just results in the set of the four linear
equations that compose the Dirac equation being combined in different ways,
so this rearrangement can be absorbed in the definition of R̂(Λ). That is, one
can choose to impose the convention that γµ′ = γµ. The transformed Dirac
equation can be expressed as

γµ′ ( p̂′µ − q

c
A′
µ ) R̂(Λ) ψ = m c R̂(Λ) ψ

γµ′ Λµ
ν ( p̂ν − q

c
Aν ) R̂(Λ) ψ = m c R̂(Λ) ψ (1405)

where the transformation properties of the momentum four-vector have been
used100. On multiplying by the inverse of R̂(Λ), one has

R̂−1(Λ) γµ′ Λµ
ν ( p̂ν − q

c
Aν ) R̂(Λ) ψ = m c ψ (1406)

R̂−1(Λ) γµ′ R̂(Λ) Λµ
ν ( p̂ν − q

c
Aν ) ψ = m c ψ (1407)

where the four by four matrices R̂(Λ) have been commuted with the differential
operators and also with the components of the Lorentz transform. The condition
for covariance as

R̂−1(Λ) γµ′ R̂(Λ) Λµ
ν = γν (1408)

The transformed Dirac equation has the same form as the original equation if
the transformed γµ′ matrices satisfy the same anti-commutations and conditions
as the unprimed matrices. This can be achieved by choosing γµ′ = γµ. This
choice yields the condition for covariance as

R̂−1(Λ) γµ R̂(Λ) Λµ
ν = γν (1409)

Since for a Lorentz transform one has

Λµ
ν Λρν = δµ

ρ (1410)

then multiplying the above covariance condition by Λρν leads to

R̂−1(Λ) γµ R̂(Λ) = Λµν γ
ν (1411)

The above equation determines the 4 × 4 matrix R̂(Λ). If R̂(Λ) exits, the Dirac
equation has the same form in the two frames of reference and the solutions
are linearly related. Pauli’s “fundamental theorem” guarantees that a matrix
R̂(Λ) exists which does satisfy the condition. Instead of following the general
theorem, the solution will be inferred from consideration of infinitesimal Lorentz

99This is a statement of Pauli’s fundamental theorem [W. Pauli, Ann. Inst. Henri Poincaré
6, 109 (1936).]. For a general discussion, see R. H. Good Jr. Rev. Mod. Phys. 27, 187
(1955).
100It should be noted that the matrices Λµ

ν and R̂ act on totally different spaces. The

matrices Λµ
ν act on the components of the four-vectors xν , whereas the R̂ matrices act on

the components of the four-component Dirac spinor ψ.
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transformations.

The matrix R̂(Λ) will be determined by considering the effect of an infinites-
imal Lorentz transformation

Λµν = δµν + ǫµν + . . . (1412)

where δµν is the Kronecker delta function. The matrix R̂(Λ) for the infinitesimal
transformation can also be expanded as

R̂ = Î − i

4
ǫµν ωµ

ν + . . . (1413)

where ωµ
ν is a four by four matrix that has yet to be determined. The inverse

matrix can be written as

R̂−1 = Î +
i

4
ǫµν ωµ

ν + . . . (1414)

to first-order in the infinitesimal quantity ǫµν . On substituting the matrices for
the infinitesimal transform into the equation that determines R̂, one obtains

i

4
ǫρσ

(
ωρ

σ γµ − γµ ωρ
σ

)
= ǫµν γ

ν (1415)

or on raising and lowering indices

i

4
ǫρσ

(
ωρσ γµ − γµ ωρσ

)
= gµρ ǫρσ γ

σ (1416)

Thus, since ǫρσ is anti-symmetric as it represents an infinitesimal Lorentz trans-
formation, the matrix ωρσ can be restricted to be anti-symmetric in the indices,
because any symmetric part does not contribute to the matrix R̂. By making
specific choices for the anti-symmetric quantities ǫρσ, which are zero except for
a chosen pair of indices (say α and β), one finds that the anti-symmetric part
of ωαβ is determined from the equation

i

2
[ ωαβ , γµ ] = gµα γβ − gµβ γα (1417)

These sets of equations have to be satisfied even if arbitrary choices are made for
the infinitesimal Lorentz transformations ǫρσ. The infinitesimal unitary matrix

R̂ can be expressed in terms of six generators ωρσ of the infinitesimal Lorentz
transformation

R̂ = Î − i

4
ǫρσ ω

ρσ + . . . (1418)

The set of matrices ωρσ that define R̂ must satisfy the equation

i

2
[ ωρσ , γµ ] = gµρ γσ − gµσ γρ (1419)
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The set of (as yet unknown) matrices ωρσ that solve the above set of equations
are given by

ωαβ = σαβ =
i

2
[ γα , γβ ] (1420)

which are the six generators of the general infinitesimal Lorentz transformation.
This solution, and hence, the existence of R̂(Λ) shows that the solutions of the
Dirac equation and the transformed equation are in a one to one correspondence.

——————————————————————————————————

Proof of Solution

It can be shown that the expression for σα,β given in eqn(1420) satisfies the
requirement of eqn(1419), by evaluating the nested commutator through repeat-
edly using the anti-commutation properties of the γ matrices. The commutator
can be expressed as a nested commutator or as the sum of two commutators

[ σαβ , γµ ] =
i

2
[ [ γα , γβ ] , γµ ]

=
i

2
[ γα γβ , γµ ] − i

2
[ γβ γα , γµ ] (1421)

On using the anti-commutation relation for the γ matrices

1

2

(
γα γβ + γβ γα

)
= gα,β Î (1422)

one can eliminate the second term leading to

[ σαβ , γµ ] = i [ γα γβ , γµ ] + i gα,β [ Î , γµ ]

= i [ γα γβ , γµ ] (1423)

where the second line follows since the identity matrix commutes with γµ. One
notices that if the γµ’s are anti-commuted to the center of each product, some
terms will cancel and there may be some simplification. On using the anti-
commutation relation in the second term of the expression

[ σαβ , γµ ] = i

(
γα γβ γµ − γµ γα γβ

)
(1424)

one finds

[ σαβ , γµ ] = i

(
γα γβ γµ + γα γµ γβ − 2 gµ,α γβ

)
(1425)

Likewise, the γ matrices in the first term can also be anti-commuted, leading to

[ σαβ , γµ ] = i

(
2 gµ,β γα − γα γµ γβ + γα γµ γβ − 2 gµ,α γβ

)

= 2 i

(
gµ,β γα − gµ,α γβ

)
(1426)
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since the middle pair of terms cancel. Hence, one has proved that

i

2
[ σαβ , γµ ] =

(
gµ,α γβ − gµ,β γα

)
(1427)

which completes the identification of the solution of the equation for ωα,β .
Therefore, since R̂(Λ) exists, it has been shown that the form of the Dirac
equation is maintained in the primed reference frame and that there is a one
to one correspondence between the solutions of the primed and unprimed frames.

——————————————————————————————————

Equivalence of Physical Properties

It remains to be shown that the ψ and ψ′ describe the properties of the same
physical system, albeit in two different frames of reference. That is, the proper-
ties associated with ψ must be related to the properties of ψ′ and the relation
can be obtained by considering the Lorentz transformation. The most complete
physical descriptions of a unique quantum mechanical state are related to the
probability density, which can only be inferred from an infinite set of position
measurements. The probability density, should behave similarly to the time
component of a four-vector as was seen from the consideration of the continuity
equation. Therefore, it follows that if the four-vector probability currents of ψ
and ψ′ are related via a Lorentz transformation, then the two spinors describe
the same physical state of the system.

The probability current four-vector jµ in the unprimed frame is described
by

jµ = c ψ
†
γµ ψ

= c ψ† γ(0) γµ ψ (1428)

and in the primed frame, one has

jµ′ = c ψ†′ γ(0) γµ ψ′

= c ψ† R̂† γ(0) γµ R̂ ψ (1429)

The identity
R̂−1 = γ(0) R̂† γ(0) (1430)

will be proved below, so on using this identity together with

γ(0) γ(0) = Î (1431)

the probability current density can be re-written as

jµ′ = c ψ† γ(0) γ(0) R̂† γ(0) γµ R̂ ψ

= c ψ† γ(0) R̂−1 γµ R̂ ψ (1432)
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However, because the covariant condition is given by

R̂−1(Λ) γµ R̂(Λ) = Λµν γ
ν (1433)

the current density can be expressed as

jµ′ = c ψ† γ(0) Λµν γ
ν ψ

= Λµν c ψ
†
γν ψ

= Λµν j
ν (1434)

Hence, the probability current densities jµ′ and jµ found in the two reference
frames are simply related via the Lorentz transformation. Therefore, the Dirac
equation gives consistent results, no matter what inertial frame of reference is
used.

——————————————————————————————————

Proof of Identity

The identity
R̂−1(Λ) = γ(0) R̂†(Λ) γ(0) (1435)

can be proved by starting from the expression for the expression for R̂ appro-
priate for infinitesimal transformation given by

R̂ = Î +
1

8
ǫµν [ γµ , γν ] + . . . (1436)

Hence, the Hermitean conjugate is given by

R̂† = Î +
1

8
ǫµν [ γν† , γµ† ] + . . .

R̂† = Î − 1

8
ǫµν [ γµ† , γν† ] + . . . (1437)

since the Hermitean conjugate of a product is the product of the Hermitean
conjugate of the factors taken in opposite order. On forming the product
γ(0) R̂† γ(0) and inserting a factor of

γ(0) γ(0) = Î (1438)

between the pairs of four by four γ matrices in the commutator and noting that

γ(0) γµ† γ(0) = γµ (1439)

one finds that

γ(0) R̂† γ(0) = Î − 1

8
ǫµν [ γµ , γν ] + . . .

= R̂−1 (1440)
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The last line follows from the observation that on combining the expression for
R̂ with the expression for γ(0) R̂† γ(0), the terms of order ǫ cancel. Hence to
the order of ǫ2, the product γ(0) R̂† γ(0) coincides with R̂−1. This concludes
the discussion of the desired identity.

Finite Rotations

Consider a finite rotation of the coordinate system specified by the transfor-
mation matrix Λ

xµ′ = Λµν x
ν (1441)

Specifically, a finite (passive) rotation through an angle ϕ about the ê3 direction
can be expressed in terms of the transformation matrix

Λ =




1 0 0 0
0 cosϕ + sinϕ 0
0 − sinϕ cosϕ 0
0 0 0 1


 (1442)

The above transformation represents a rotation of the coordinate system while
the physical system stays put. For an infinitesimal rotation through δϕ, the

x
(1)

x
(2)

x
(1)
'

x
(2)
'

ϕ

Figure 45: A passive rotation of the coordinate system through an angle ϕ about
the ê3-axis.

transformation matrix reduces to

Λ =




1 0 0 0
0 1 + δϕ 0
0 − δϕ 1 0
0 0 0 1


 + . . . (1443)

to first-order in the infinitesimal quantity δϕ. Therefore, with the infinitesimal
form of the general Lorentz transformation

Λµν = δµν + ǫµν + . . . (1444)
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on lowering the first index, one identifies

ǫ12 = − ǫ21 = − δϕ (1445)

The infinitesimal transformation of a Dirac spinor was determined to be given
by

R̂(δϕ) = Î − i

4
ǫµν σ

µν + . . . (1446)

Hence, for a infinitesimal rotation one has

R̂(δϕ) = Î +
i

4
( δϕ σ1,2 − δϕ σ2,1 ) + . . .

= Î +
i

2
δϕ σ1,2 + . . .

= exp

[
i
δϕ

2
σ1,2

]
(1447)

since σµ,ν is anti-symmetric. On compounding N infinitesimal transformations
about the same axis R̂(δϕ) using their exponential form, and defining N δϕ =
ϕ, one obtains the finite rotation R̂(ϕ)

R̂(ϕ) =

(
R̂(δϕ)

)N

= exp

[
i N

δϕ

2
σ1,2

]

= exp

[
i
ϕ

2
σ1,2

]
(1448)

Therefore, for a finite rotation, the transformation matrix is given by

R̂(ϕ) = exp

[
i
ϕ

2
σ1,2

]
(1449)

which can be expressed in terms of even and odd-powers of σ1,2 via

R̂(ϕ) = cos

[
ϕ

2
σ1,2

]
+ i sin

[
ϕ

2
σ1,2

]
(1450)

but since

σ1,2 =
i

2
[ γ(1) , γ(2) ]

= σ̂(3) (1451)

the transformation can be expressed as

R̂(ϕ) = cos

[
ϕ

2
σ̂(3)

]
+ i sin

[
ϕ

2
σ̂(3)

]
(1452)
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The above expression can be simplified by expanding the trigonometric functions
in series of ϕ and then using the property of the σ̂(j) matrices

( σ̂(3) )2 = Î (1453)

Since the repeated use of the above identity leads to

( σ̂(3) )2n = Î

( σ̂(3) )2n+1 = σ̂(3) (1454)

the series simplify and can be re-summed leading to

R̂(ϕ) = cos

[
ϕ

2

]
Î + i sin

[
ϕ

2

]
σ̂(3) (1455)

Therefore, under a finite rotation through angle ϕ around the unit vector ê, a
spinor is rotated by the operator

R̂(ϕ) = cos
ϕ

2
Î + i sin

ϕ

2
ê . σ̂ (1456)

From the above equation, due to the presence of the half-angle, one notes that
a rotation ϕ and through ϕ+ 2π are not equivalent, since

R̂(ϕ+ 2π) = − R̂(ϕ) (1457)

which changes the sign of the spinor. For spin one-half electrons, it is necessary
to rotate through 4π to return to the same state

R̂(ϕ+ 4π) = R̂(ϕ) (1458)

A quantity which is bi-linear in ψ
†

and ψ will remain invariant under a rotation
of 2π.

Finite Lorentz Boosts

A finite Lorentz boost by velocity v along the ê1 direction can be expressed
in terms of the transformation

Λ =




coshχ − sinhχ 0 0
− sinhχ coshχ 0 0

0 0 1 0
0 0 0 1


 (1459)

where the rapidity χ is defined by

tanhχ =
v

c
(1460)
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so

coshχ =
1√

1 − (v
c
)2

sinhχ =
v
c√

1 − (v
c
)2

(1461)

For an infinitesimal boost through δχ, the transformation matrix reduces to

Λ =




1 − δχ 0 0
− δχ 1 0 0

0 0 1 0
0 0 0 1


 + . . . (1462)

to first-order in the infinitesimal quantity δχ. Therefore, with the infinitesimal
form of the general Lorentz transformation

Λµν = δµν + ǫµν + . . . (1463)

on lowering the first index, one identifies

ǫ01 = − ǫ10 = − δχ (1464)

The infinitesimal transformation of a Dirac spinor was determined to be given
by

R̂(δχ) = Î − i

4
ǫµν σ

µν + . . . (1465)

Hence, for a infinitesimal Lorentz boost one has

R̂(δχ) = Î + 2
i

4
δχ σ0,1 + . . .

= exp

[
i
δχ

2
σ0,1

]
(1466)

On compounding N successive infinitesimal Lorentz boosts (with parallel veloc-
ities) given by R̂(δχ) and defining N δχ = χ, one obtains the finite Lorentz
boost R̂(χ)

R̂(χ) =

(
R̂(δχ)

)N

= exp

[
i N

δχ

2
σ0,1

]

= exp

[
i
χ

2
σ0,1

]
(1467)

Therefore, for a finite Lorentz boost, the transformation matrix is given by

R̂(χ) = exp

[
i
χ

2
σ0,1

]
(1468)
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which can be expressed in terms of even and odd-powers of σ0,1 via

R̂(χ) = cosh

[
i
χ

2
σ0,1

]
+ sinh

[
i
χ

2
σ0,1

]
(1469)

but since

σ0,1 =
i

2
[ γ(0) , γ(1) ]

= i α(1) (1470)

the transformation can be expressed as

R̂(χ) = cosh

[
− χ

2
α(1)

]
+ sinh

[
− χ

2
α(1)

]
(1471)

The above expression can be simplified by expanding the hyperbolic functions
in series of χ and then using the property of the α matrices

( α(1) )2 = Î (1472)

Since the repeated use of the above identity leads to

( α(1) )2n = Î

( α(1) )2n+1 = α(1) (1473)

the series simplify and can be re-summed leading to

R̂(χ) = cosh

[
− χ

2

]
Î + sinh

[
− χ

2

]
α(1)

= cosh

[
χ

2

]
Î − sinh

[
χ

2

]
α(1) (1474)

Therefore, under a finite boost through velocity v, a spinor is rotated by the
operator

R̂(χ) = cosh
χ

2

[
Î − tanh

χ

2
α(1)

]

= cosh
χ

2

[
Î − tanh

χ

2
v̂ . α

]
(1475)

where the rapidity χ is determined by

tanhχ =
v

c
(1476)

Exercise:
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Determine the relationship between the rapidities for a combined Lorentz
transformation consisting of two successive Lorentz boosts with parallel veloci-
ties v0 and v1.

Exercise:

Starting from a solution of a free stationary Dirac particle with spin σ,
perform a Lorentz boost to determine the solution for a Dirac electron with
momentum p′.

v

L'

A

ψ

Figure 46: A cartoon depicting a stationary free-electron confined in a volume
V with proper length L, viewed from a coordinate system moving with velocity
v anti-parallel to the ê1-axis.

Exercise:

Show that the helicity eigenvalue of a free Dirac particle can be reversed by
going to a new reference frame which is “overtaking” the particle.

12.5.1 The Space of the Anti-commuting γµ-Matrices.

One can form sixteen matrices Γi from the product of the four γ matrices. Since
the γµ matrices obey the anti-commutation relations

{ γµ , γν }+ = 2 gµ,ν Î (1477)

all other products can be reduced to the above products. The order of the
matrices is irrelevant, since the different matrices anti-commute. Also, since
( γµ )2 = ± Î, one only needs to consider the products in which each matrix
enters at most one time. Hence, since each of the four matrices either appear as
a factor or do not, there are only 24 such matrices. These sixteen Γi matrices
can be constructed from Î, γµ, σµ,ν = i γµ γν , γ(4) and γ(4) γµ, by choosing
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Table 6: The Set of the Sixteen Matrices Γn with their Phase Factors (j > i)

Î

γ(0) i γ(i)

γ(0) γ(i) i εi,j,k γ(i) γ(j)

γ(4) = i γ(0) γ(1) γ(2) γ(3)

− i γ(0) γ(4) γ(i) γ(4)

appropriate phase factors.

Closure under Multiplication

The set of matrices Γi formed from the set of γµ are closed under multipli-
cation, so

Γi Γj = ai,j Γk (1478)

where a4
i,j = 1. The sixteen Γi matrices can be chosen as the product of the

members of the above set multiplied by a phase factor taken from the set ± 1
and ± i, such that the condition

( Γi )2 = Î (1479)

is satisfied. Furthermore, by counting the number of non-equivalent factors of
the γµ in the products, one can show that

Γi Γj = Î only if i = j (1480)

Also, by anti-commuting the factors of γµ in the products, one can show that

Γi Γj = ± Γj Γi (1481)

Specifically, for a fixed Γi not equal to the identity, one can always find a
specific Γk such that

Γi Γk = − Γk Γi (1482)

which on multiplying by Γk results in

Γk Γi Γk = − Γi (1483)
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Traceless Matrices

The above facts can be used to show that the Γi matrices, other than the
identity, are traceless. This can be proved by considering

− Trace Γi = Trace( − Γi ) = Trace( Γk Γi Γk )

= Trace( Γi Γk Γk ) = Trace Γi (1484)

in which the existence of a specific Γk which anti-commutes with Γi has been
used, and where the cyclic invariance of the trace has been used as has been
( Γk )2 = Î. Hence, all the Γi matrices, other than the identity, are traceless

Trace Γi = 0 (1485)

Linear Independence

The sixteen Γi matrices are linearly independent. The linear independence
can be expressed in terms of the absence of any non-trivial solution of the
equation ∑

i

Ci Γi = 0 (1486)

other than Ci ≡ 0 for all i. If the Γi are linearly independent, the only solution
of this equation is

Ci ≡ 0 for all i (1487)

This can be proved by multiplying eqn(1486) by any one Γj in the set which
leads to

Cj Î +
∑

i 6=j
Ci Γi Γj = 0

Cj Î +
∑

i 6=j
Ci ai,j Γk = 0 (1488)

On taking the trace one finds

0 = Cj Trace Î +
∑

i 6=j
Ci ai,j Trace Γk

= Cj 4 (1489)

since the matrices Γk are traceless. Hence, all the Cj are zero, so the matrices
are linearly independent.
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Uniqueness of Expansions

The existence of sixteen linearly independent matrices require that the ma-
trices can be represented in a space of N × N matrices, where N ≥ 4. Any
matrix A in the space of 4 × 4 matrices can be uniquely expressed in terms of
the basis set of the Γi. For example, if

A =
∑

i

Ci Γi (1490)

then on multiplying by Γj and taking the trace, one has

Trace( A Γj ) =
∑

i

Ci Trace( Γi Γj )

= Cj Trace( Γj Γj ) +
∑

i 6=j
Ci Trace( Γi Γj )

= Cj Trace( Î ) +
∑

i 6=j
Ci Trace( ai,j Γk )

= Cj 4 (1491)

Hence, the coefficients Cj in the expansion of A are uniquely determined as

Cj =
1

4
Trace( A Γj ) (1492)

Schur’s Lemma

The uniqueness of the expansion can be used to show that the product of Γi
for fixed i with the set of Γj for leads to a different Γk for each j. This can be
shown by assuming that there exist two different (linearly independent) values
Γj and Γj′ which lead to the same Γk

Γi Γj = ai,j Γk

Γi Γj′ = ai,j′ Γk

(1493)

On multiplying by Γi, one obtains

Γj = ai,j Γi Γk

Γj′ = ai,j′ Γi Γk

(1494)

Hence, one infers that

Γj′ =
ai,j′

ai,j
Γj (1495)
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which contradicts the assumption that Γj and Γj′ are linearly independent.
Therefore for fixed i, the product of Γi Γj leads to a different result Γk for the
different Γj .

One can also prove Schur’s lemma. Schur’s Lemma states that if a matrix A
commutes with all the γµ’s, then A is a multiple of the identity. If A commutes
with the γµ’s, it also commutes with all the Γi’s. Schur’s lemma follows from
the expansion of A as

A = Ci Γi +
∑

j 6=i
Cj Γj (1496)

for any i such that Γi 6= Î. Then, one notes that there exits a Γk such that

Γk Γi Γk = − Γi (1497)

Since it has been assumed that A commutes with all the Γi, for the specific Γk
one has

A = Γk A Γk

= Ci Γk Γi Γk +
∑

j 6=i
Cj Γk Γj Γk

= − Ci Γi +
∑

j 6=i
Cj Γk Γj Γk (1498)

Furthermore, since the Γi matrices either commute or anti-commute

Γk Γj Γk = ( ± 1 )j,k Γj (1499)

the above equation reduces to

A = − Ci Γi +
∑

j 6=i
Cj ( ± 1 )j,k Γj (1500)

which should be compared with the assumed form of the expansion

A = Ci Γi +
∑

j 6=i
Cj Γj (1501)

Since the expansion is unique, the coefficients of the Γj are unique and in par-
ticular

Ci = − Ci (1502)

so Ci = 0 for any i such that Γi 6= Î. Hence, if A commutes with all the Γi
then A must be proportional to the identity.

Pauli’s Fundamental Theorem
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Pauli’s fundamental theorem states that if there are two representations of
the algebra of anti-commuting γ-matrices, say γµ′ and γµ, then these represen-
tations are related via a similarity transformation

γµ′ = Ŝ γµ Ŝ−1 (1503)

where Ŝ is a non-singular matrix.

The theorem requires that one constructs a set of sixteen matrices Γi
′ from

the γµ′ following the same rules with which the Γi were constructed from γµ.
Then one can describe the non-singular matrix by

Ŝ =
∑

i

Γi
′ F Γi (1504)

where F is an arbitrary 4 × 4 matrix.

First one notes that
Γi Γj = ai,j Γk (1505)

so on iterating, one has

Γi Γj Γi Γj = a2
ı,j Γ2

k = a2
i,j Î (1506)

since
Γ2
k = Î (1507)

On pre-multiplying eqn(1506) by Γj Γi, one obtains

Γj Γi Γi Γj Γi Γj = a2
i,j Γj Γi (1508)

but since

Γj Γi Γi Γj = Î (1509)

eqn(1508) reduces to

Γi Γj = a2
i,j Γj Γi (1510)

However, as
Γi Γj = ai,j Γk (1511)

the equation becomes

ai,j Γk = a2
i,j Γj Γi (1512)

or since a4
i,j = 1, the equation can be expressed as

Γj Γi = a3
i,j Γk (1513)
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The Γ
′

i matrices are constructed so that they satisfy similar relations to the Γi.

In particular, the Γ
′

i matrices satisfy

Γi
′ Γj

′ = ai,j Γk
′ (1514)

with the same constants ai,j as the unprimed matrices.

Pauli’s theorem follows from the above relations by noting that

Γi
′ Ŝ Γi = Γi

′ (
∑

j

Γj
′ F Γj ) Γi (1515)

but on recalling that
Γj Γi = a3

i,j Γk (1516)

and
Γi

′ Γj
′ = ai,j Γk

′ (1517)

one finds
Γi

′ Ŝ Γi =
∑

j

a4
i,j Γk

′ F Γk (1518)

Therefore, with a4
i,j = 1, the above equation reduces to

Γi
′ Ŝ Γi =

∑

j

Γk
′ F Γk (1519)

However, since i is fixed and j is being summed over, every Γk appears once
and only once in the product. Therefore, the sum can be performed over k

Γi
′ Ŝ Γi =

∑

k

Γk
′ F Γk = Ŝ (1520)

If one can show that the matrix Ŝ has an inverse, then on post-multiplying by
Ŝ−1, one finds

Γi
′ Ŝ Γi Ŝ

−1 = Î (1521)

Furthermore, since Γi
′ is its own inverse, then on pre-multiplying by Γi

′ the
equation reduces to

Ŝ Γi Ŝ
−1 = Γi

′ (1522)

This is a generalization of the statement of the theorem. As a particular case,
one may choose Γi = γµ in which case the theorem becomes

γµ′ = Ŝ γµ Ŝ−1 (1523)

which was the initial statement of Pauli’s fundamental theorem made above.
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The matrix Ŝ is non-singular and has an inverse. This can be shown by
using Schur’s Lemma. One can construct a matrix Ŝ′ in a manner which is
symmetrical to the construction of Ŝ. That is

Ŝ′ =
∑

i

Γi G Γi
′ (1524)

From symmetry it follows that since eqn(1520) is given by

Ŝ = Γi
′ Ŝ Γi (1525)

one also has
Ŝ′ = Γi Ŝ

′ Γi
′ (1526)

Therefore, on taking the product, one obtains

Ŝ′ Ŝ = Γi Ŝ
′ Γi

′ Γi
′ Ŝ Γi

= Γi Ŝ
′ Ŝ Γi (1527)

Hence, by Schur’s Lemma one sees that Ŝ′ Ŝ commutes with all the matrices in
the space, therefore it must be a multiple of the identity

Ŝ′ Ŝ = κ Î (1528)

where κ is a constant. By a judicious choice of the magnitude of the elements
of F , the constant κ can be set to unity, yielding

Ŝ′ Ŝ = Î (1529)

Thus, Ŝ is non-singular so the inverse exists and is given by Ŝ−1 = Ŝ′.

12.5.2 Polarization in Mott Scattering

When evaluated in the Born Approximation, Mott scattering does not result
in the polarization of an unpolarized beam. However, when higher-order cor-
rections are included, Mott scattering produces a partially polarization of the
scattered electrons101. If the incident beam is polarized by having a definite
helicity, it is expected that the helicity may change as a result of the scattering.

The probability of non-helicity flip scattering and helicity flip scattering can
be evaluated using the Born approximation. The initial beam will be considered
as having a momentum p parallel to the ê3-axis and as having a helicity of +1.
The initial spinor is proportional to

ψp,+(r) =

√
Ep + m c2

2 Ep V

(
χ+

c p
Ep + m c2

χ+

)
exp

[
i
p . r

h̄

]
(1530)

101N. F. Mott, Proc. Roy. Soc. A 124, 425 (1929).
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p'

p'

p

p

θ'

Figure 47: Helcity non-flip and helicity flip Mott scattering of an electron with
helicity +1. The scattering angle is θp′ .

The electrons are assumed to be elastically scattered to a state with final mo-
mentum p′. The scattering is defined to occur through an angle θp′ in the z−x
plane. The final state is composed of a linear-superposition of states with dif-
ferent helicities. Since the final state helicities are specified relative to the final
momentum, the final state helicity eigenstates can be obtained by rotating the
initial state helicity eigenstates through an angle θp′ around the ê2-axis

ψ′
p′,Λ′(r) = R̂(θp′) ψp′,Λ′(x)

=

√
Ep + m c2

2 Ep V
R̂(θp′)

(
χΛ′

c p Λ′

Ep + m c2
χΛ′

)
exp

[
i
p′ . r

h̄

]

(1531)

where the rotation operator is given by

R̂(θp′) =

[
cos

θp′

2
Î − i sin

θp′

2
σ̂(2)

]
(1532)

which does not mix the upper and lower two-component spinors. Therefore, one
finds that the final state two-component spinors representing helicity eigenstates
are given by

χ′
+ =

[
cos

θp′

2
I − i sin

θp′

2
σ(2)

]
χ+

=

(
cos

θp′

2

sin
θp′

2

)
(1533)

and

χ′
− =

[
cos

θp′

2
I − i sin

θp′

2
σ(2)

]
χ−
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=

(
− sin

θp′

2

cos
θp′

2

)
(1534)

Therefore, the final state basis states are given by

ψ′
p′,Λ′(r) =

√
Ep + m c2

2 Ep V

(
χ′

Λ′

c p Λ′

Ep + m c2
χ′

Λ′

)
exp

[
i
p′ . r

h̄

]
(1535)

The Born approximation scattering cross-section can be expressed in terms of
the modulus squared matrix elements

∣∣∣∣
∫

d3r ψ′†
p′,Λ′(r) γ(0) Z e2

| r | ψp,+(r)

∣∣∣∣
2

(1536)

which is evaluated as
(

4 π Z e2

V | p − p′ |2
)2 (

1 + Λ′ c2 p2

( Ep + m c2 )2

)2 (
Ep + m c2

2 Ep

)2 ∣∣∣∣ χ
′†
Λ′ χ+

∣∣∣∣
2

=

(
4 π Z e2

V | p − p′ |2
)2 (

( Ep + m c2 )2 + Λ′ c2 p2

2 Ep ( Ep + m c2 )

)2 ∣∣∣∣ χ
′†
Λ′ χ+

∣∣∣∣
2

(1537)

Therefore, the probability for non-helicity flips scattering is proportional to

∝
(

4 π Z e2

V | p − p′ |2
)2

cos2
θp′

2
(1538)

whereas the probability for helicity flip scattering is given by

∝
(

4 π Z e2

V | p − p′ |2
)2 (

m c2

Ep

)2

sin2 θp′

2
(1539)

It is seen that the probability for helicity flip scattering vanishes in the ultra-
relativistic limit. Also, in the non-relativistic limit, a static charge cannot flip
the spin. Therefore, in the non-relativistic limit, if one expresses the spin eigen-
state as a linear superposition of the final helicity eigenstates

χ+ = cos
θp′

2
χ′

+ − sin
θp′

2
χ′
− (1540)

one is lead to expect that the relative probability of helicity flip to non-helicity
flip will be governed by a factor of

tan2 θp′

2
(1541)

which agrees with the above matrix elements evaluated in the non-relativistic
limit. The cross-section for non-flip scattering is determined as

(
dσ

dΩ′

)

+,+

=

(
2 Z e2 Ep

4 c2 p2 sin2 θp′

2

)2

cos2
θp′

2
(1542)
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whereas the cross-section for spin flip scattering is given by

(
dσ

dΩ′

)

+,−
=

(
2 Z e2 m c2

4 c2 p2 sin2 θp′

2

)2

sin2 θp′

2
(1543)

The Born approximation to the total cross-section for scattering of polarized
electrons, in which the final polarization is not measured, is given by

(
dσ

dΩ′

)

+

=

(
dσ

dΩ′

)

+,+

+

(
dσ

dΩ′

)

+,−

=

(
2 Z e2 Ep

4 c2 p2 sin2 θp′

2

)2 [
cos2

θp′

2
+

(
m c2

Ep

)2

sin2 θp′

2

]

=

(
2 Z e2 Ep

4 c2 p2 sin2 θp′

2

)2 [
1 −

(
p c

Ep

)2

sin2 θp′

2

]
(1544)

which is the same as the cross-section as calculated for unpolarized electrons.
The degree of polarization of the scattered beam is given

P (θp′) =

(
E2
p cos2

θp′

2 − m2 c4 sin2 θp′

2

E2
p cos2

θp′

2 + m2 c4 sin2 θp′

2

)
(1545)

If the initial beam of electrons is unpolarized, the scattered electrons would be
observed to be partially polarized, where the net polarization is in the plane
perpendicular to the scattering plane. However, the polarization is due to pro-
cesses of higher-order than the Born approximation and is governed by the factor

(Z e2

h̄ c
).

12.6 The Non-Relativistic Limit

The non-relativistic limit of the Dirac equation should reduce to the Schrödinger
equation. As shall be seen, the appropriate Schrödinger equation for a particle
with positive-energy is modified due to the existence of spin. The non-relativistic
limit is described by the Pauli equation102.

The Dirac equation can be written as

(
i
h̄

c

∂

∂t
− q

c
A0

)
ψ =

[
α . ( p̂ − q

c
A ) + β m c

]
ψ (1546)

The equation can be written in 2 × 2 block diagonal form, if the wave function
is expressed in the form of two two-component spinors. We shall mainly focus
on the positive-energy solutions and recognize that, in the non-relativistic limit,
the largest component of the wave function is φA and the largest term in the

102W. Pauli, Z, Phys. 44, 601 (1927).
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energy is the rest mass energy m c2. Therefore, the spinor wave function will
be expressed as

ψ =

(
φA

φB

)
exp

[
− i

m c2

h̄
t

]
(1547)

The above form explicitly displays the rest-mass energy of the positive-energy
solution of the Dirac equation. Hence, the Dirac equation takes the form

(
i h̄

∂

∂t
− q A0

) (
φA

φB

)
=

(
c σ . ( p̂ − q

c
A ) φB

c σ . ( p̂ − q
c
A ) φA

)

− 2 m c2
(

0
φB

)
(1548)

where the rest mass has been eliminated from the equation for the large com-
ponent φA of the positive-energy solution. Since the kinetic energy and the
potential energy are assumed to be smaller than the rest mass energy, the equa-
tion for the small component
(
i h̄

∂

∂t
− q A0

)
φB = c σ .

(
p̂ − q

c
A

)
φA − 2 m c2 φB (1549)

can be expressed as

φB =
1

2 m c
σ .

(
p̂ − q

c
A

)
φA (1550)

Substituting the expression for the small component into the equation for the
large component, hence eliminating φB , one finds the equation

(
i h̄

∂

∂t
− q A0

)
φA =

1

2 m

(
σ .

(
p̂ − q

c
A

) )2

φA (1551)

which is the Pauli equation. The equation can be simplified by expanding the
terms involving the Pauli spin matrices. The Pauli identity can be used to
obtain
(
σ .

(
p̂ − q

c
A

) )2

= I

(
p̂ − q

c
A

)2

+ i σ .

( (
p̂ − q

c
A

)
∧
(
p̂ − q

c
A

) )

= I

(
p̂ − q

c
A

)2

− q h̄

c
σ .

(
∇ ∧ A

)
(1552)

where the last term originates from the non-commutativity of the components
of p̂ and A. Since the magnetic field B is given by

B = ∇ ∧ A (1553)

the Pauli equation can be expressed as

i h̄
∂

∂t
φA =

1

2 m

(
p̂ − q

c
A

)2

φA + q A0 φ
A − q h̄

2 m c
σ . B φA (1554)
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The Pauli equation103 is the non-relativistic limit of the Dirac equation. It rep-
resents the Schrödinger equation for a charged particle with spin one-half. The
two components of the spinor φA in the Pauli equation represent the internal
spin of the electron. The last term represents the anomalous Zeeman interaction
between the magnetic field and the electron’s spin.

The other contribution to the Zeeman interaction originates with the elec-
tron’s orbital angular momentum L. The ordinary Zeeman interaction occurs
between the constant magnetic field B and the orbital angular momentum and
originates from the gauge-invariant term in the Hamiltonian

1

2 m

(
p̂ − q

c
A

)2

=
1

2 m

(
p̂ − q

2 c
B ∧ r

)2

(1555)

where the vector potential has been expressed in terms of the uniform magnetic
field via

A =
1

2
B ∧ r (1556)

The expression for the energy term can be further simplified to

1

2 m

(
p̂ − q

c
A

)2

=
p̂2

2 m
− q

4 m c

(
p̂ . (B ∧ r) + (B ∧ r) . p̂

)

+
q2

2 m c2
A2

=
p̂2

2 m
− q

2 m c

(
(B ∧ r) . p̂

)
+

q2

2 m c2
A2

=
p̂2

2 m
− q

2 m c

(
B . (r ∧ p̂)

)
+

q2

2 m c2
A2

=
p̂2

2 m
− q

2 m c

(
B . L̂

)
+

q2

2 m c2
A2 (1557)

In obtaining the second line, the i-th component of p̂ has been commuted with
the i-th component of ( B ∧ r ). In obtaining the third line, the (cyclic) vector
identity

( A ∧ B ) . C = ( B ∧ C ) . A (1558)

has been used. The first term in eqn(1557) represents the usual non-relativistic
expression for the kinetic energy of the electrons, the second term represents
the ordinary Zeeman interaction which originates from the paramagnetic inter-
action. The last term represents the diamagnetic interaction.

The total Zeeman interaction is the energy of the total magnetic moment M
in the field B

ĤZeeman = − M . B (1559)

103W. Pauli, Z, Phys. 44, 601 (1927).
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The Dirac equation results in the Zeeman interaction of the form

ĤZeeman = − q

2 m c
B .

(
L̂ + h̄ σ

)

= − q

2 m c
B .

(
L̂ + 2 S

)
(1560)

where the spin angular momentum S has been identified as

S =
h̄

2
σ (1561)

It is seen that both the spin angular momentum and the orbital angular momen-
tum of the charged particle interacts with the magnetic field, therefore, both
contribute to the magnetic moment. However, it is noted that the magnetic
moment can be written in the form

M =
q

2 m c

(
L̂ + g S

)
(1562)

where the magnitude of the magnetic moment is determined by the factor q h̄
2 m c

which is the Bohr magneton. The Dirac equation shows that the spin angular
momentum couples with a different strength to orbital angular momentum, and
the relative coupling strength g (the gyromagnetic ratio) is given by g = 2.
The existence of spin and the value of 2 for the gyromagnetic ratio were the
first successes of Dirac’s theory. Quantum Electrodynamics104 yields a small
correction to the gyromagnetic ratio of

g = 2

(
1 +

1

2 π

(
e2

h̄ c

)
+ . . .

)
(1563)

which has been experimentally verified to incredible precision105. Using the fea-
tures associated with spin, Dirac’s theory correctly described the fine structure
of the Hydrogen atom. The second success of the Dirac equation followed Dirac’s
physical interpretation of the negative-energy states in terms of anti-particles106.
The second round of success came with the discovery of the positron by Ander-
son107.

Exercise:

The Dirac equation can be phenomenologically modified to describe particles
with anomalous magnetic moments. The Dirac equation is modified to
[
i h̄ γµ ( ∂µ + i

q

h̄ c
Aµ ) + κ

q h̄

4 m c2
σµ,ν Fµ,ν − m c Î

]
ψ = 0 (1564)

104J. S. Schwinger, Phys. Rev. 73, 416 (1948).
105H. M. Foley and P. Kusch, Phys. Rev. 73, 412 (1948).

R. S. Van Dyck Jr., P. B. Schwinberg and H. G. Dehmelt, Phys. Rev. Lett. 59, 26 (1987).
106P. A. M. Dirac, Proc. Roy. Soc. A 126, 360 (1930).
107C. D. Anderson, Phys. Rev. 43, 491 (1933).
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Show that the modified equation is Lorentz covariant and that the Hamiltonian
is Hermitean. Also derive the corrections to the magnetic moment due to the
spin by examining the non-relativistic limit.

12.7 Conservation of Angular Momentum

The law of conservation of angular momentum will now be examined. For a
relativistic electron the orbital angular momentum and the spin angular mo-
mentum are not separately conserved. However, the total angular momentum
which is the sum of the orbital angular momentum and spin angular momentum
is conserved.

The orbital angular momentum L̂ defined by

L̂ = r ∧ p̂ (1565)

is not conserved for a spherically symmetric potential. The Dirac Hamiltonian
is given by

Ĥ = c α . p̂ + β m c2 + Î V (r) (1566)

The matrices shall be expressed in a 2 × 2 block diagonal form. Therefore, the
identity matrix is written as

Î =

(
I 0
0 I

)
(1567)

and

β =

(
I 0
0 −I

)
(1568)

Finally, the α matrices are of off-diagonal form

α =

(
0 σ
σ 0

)

=

(
0 I
I 0

)
σ̂ (1569)

where σ̂ is the 2 × 2 block-diagonal Pauli spin matrix. The rate of change of
orbital angular momentum is given by the Heisenberg equation of motion

i h̄
∂

∂t
L̂ = [ L̂ , Ĥ ] (1570)

The orbital angular momentum operator commutes with the mass term and
with the spherically symmetric potential V (r). The orbital angular momentum
does not commute with the momentum. Thus,

i h̄
∂

∂t
L̂ = c [ L̂ , α . p̂ ] (1571)
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Hence, the Heisenberg equation of motion can be expressed in the form

i h̄
∂

∂t
L̂ = c

(
0 I
I 0

)
[ L̂ , σ̂ . p̂ ]

= − c

(
0 I
I 0

)
σ̂ . [ p̂ , L̂ ] (1572)

However, the components of the orbital angular momentum L̂(i) and momenta
p(j) satisfy the commutation relations

[ L̂(i) , p(j) ] = i h̄
∑

k

ξi,j,k p(k) (1573)

Therefore, one finds

i h̄
∂

∂t
L̂ = i h̄ c

(
0 I
I 0

)
( σ̂ ∧ p̂ ) (1574)

which shows that orbital angular momentum is not conserved for a relativistic
electron with a central potential.

The spin angular momentum is also not conserved. This can be seen by
examining the Heisenberg equation of motion for the Pauli spin operator

i h̄
∂

∂t
σ̂ = [ σ̂ , Ĥ ] (1575)

The spin operator commutes with Î and β but does not commute with the α
matrices. Hence,

i h̄
∂

∂t
σ̂ = c [ σ̂ , α . p̂ ]

= c [ σ̂ , σ̂ ] . p̂

(
0 I
I 0

)
(1576)

The components of the Pauli spin operators satisfy the commutation relations

[ σ(i) , σ(j) ] = 2 i
∑

k

ξi,j,k σ(k) (1577)

which, clearly, have a similar form to the commutation relations for the orbital
angular momentum. Hence, spin angular momentum is not conserved since

i h̄
∂

∂t
σ̂ = − 2 i c

(
0 I
I 0

)
( σ̂ ∧ p̂ ) (1578)
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The total angular momentum Ĵ is defined via

Ĵ = L̂ + Ŝ

= L̂ +
h̄

2
σ̂ (1579)

The total angular momentum is conserved since

i h̄
∂

∂t
Ĵ = i h̄

∂

∂t
L̂ + i h̄

∂

∂t
Ŝ

= i h̄ c

[ (
0 I
I 0

)
( σ̂ ∧ p̂ ) −

(
0 I
I 0

)
( σ̂ ∧ p̂ )

]

= 0 (1580)

which follows from combining eqn(1574) and eqn(1578). This confirms the in-
terpretation of the quantity Ŝ defined by

Ŝ =
h̄

2
σ̂ (1581)

as the spin angular momentum of the electron.

12.8 Conservation of Parity

Dirac was very conscious that his book “Principles of Quantum Mechanics”
never contained any mention of parity. It seems that he had questioned the
requirement of parity invariance108 since biological systems are not parity in-
variant. Dirac’s viewpoint was vindicated by the discovery that the weak inter-
action violates parity.

The parity transform P acting on the coordinates (t, r) has the effect

P (t, r) → (t′, r′) = (t,−r) (1582)

which is an inversion of the spatial coordinates. Thus, the parity reverse the
space-like components of vectors, so the effects of the parity operation on the
position and momentum vectors are given by

P̂ r P̂−1 = − r

P̂ p P̂−1 = − p (1583)

However, the effect of the parity transform on pseudo-vectors such as orbital
angular momentum L = r ∧ p is such that

P̂ L P̂−1 = L (1584)

108The question of parity conservation in weak interactions was raised subsequently by T. D.
Lee and C. N. Yang [T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).]
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which is unchanged. This implies that spin angular momentum should also be
invariant under the parity transform

P̂ σ P̂−1 = σ (1585)

If the Hamiltonian Ĥ is invariant under a parity transform, one requires that

Ĥ = P̂ Ĥ P̂−1 (1586)

Imposing parity invariance of the Dirac Hamiltonian

Ĥ = c α . p̂ + β m c2 + Î V (r) (1587)

yields a condition on the potential

V (r) = V (−r) (1588)

and also to conditions on the Dirac matrices

P̂ α P̂−1 = − α

P̂ β P̂−1 = β (1589)

The condition on the potential is the familiar condition for parity invariance
in classical mechanics. In the standard representation, in 2 × 2 block diagonal
form, the requirement of parity invariance on the Dirac matrices become the
matrix equations

P̂
(

0 σ
σ 0

)
P̂−1 = −

(
0 σ
σ 0

)

P̂
(
I 0
0 −I

)
P̂−1 =

(
I 0
0 −I

)
(1590)

The above equation shows that, in the standard representation, the parity op-
erator can be uniquely factorized as

P̂ =

(
I 0
0 −I

)
P̂ (1591)

where the operator P̂ only acts on the coordinates r. The presence of the matrix
in the parity operation on the Dirac spinor should be compared with the effect
of the parity operator on the four-vector potential of Electrodynamics Aµ(r)
which is given by the product of spatial inversion and a matrix operation

P̂ Aµ(r, t) = γµν P̂ Aν(r, t)

= γµν A
ν(−r, t) (1592)

where the matrix γµν given by

γµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (1593)
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reverses the direction of the spatial components of the vector field.

The effect of the parity operator on the Dirac four-component spinor wave
function can be computed from

P̂ ψ(t, r) = P̂
(

φA(t, r)
φB(t, r)

)

=

(
I 0
0 −I

)(
φA(t,−r)
φB(t,−r)

)

=

(
φA(t,−r)

− φB(t,−r)

)
(1594)

Hence, in the standard representation, the parity operator changes the relative
sign of the two two-component spinors. Due to the presence of the term − I in
the lower diagonal block of the parity matrix, the lower two-component spinor
φB in the Dirac spinor is said to have a negative intrinsic parity.

The parity eigenstates satisfy the eigenvalue equation

P̂ ψ = ηp ψ (1595)

with eigenvalues ηp = ±1, since P̂2 = Î. The application of the parity
operator on the Dirac spinor leads to the equation

(
P̂ φA

−P̂ φB

)
=

(
ηp φ

A

ηp φ
B

)
(1596)

Hence, the two-component spinors φA(r) and φB(r) have opposite parities under
spatial inversion

P̂ φA(r) = ηp φ
A(r)

P̂ φB(r) = − ηp φ
B(r) (1597)

In polar coordinates, the spatial part of the parity operation P̂ is equivalent to
a reflection

θ → π − θ (1598)

followed by a rotation
ϕ → ϕ + π (1599)

which has the effect that

sin θ → sin θ

cos θ → − cos θ

exp

[
i m ϕ

]
→ ( − 1)m exp

[
i m ϕ

]
(1600)
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Hence, the spherical harmonics with m = l

Y ll (θ, ϕ) =
( − 1 )l

2l l!

√
2 l + 1

4 π
sinl θ exp

[
i l ϕ

]
(1601)

are eigenstates of the parity operator and have parity eigenvalues of (−1)l. The
lowering operator L̂−, defined via

L̂− = − h̄ exp

[
− i ϕ

] (
∂

∂θ
− i cot θ

∂

∂ϕ

)
(1602)

is invariant under the parity transformation

P̂ L̂− P̂−1 = L̂− (1603)

Therefore, on repeatedly operating on Y ll (θ, ϕ) with the lowering operator L̂−

(l −m) times, one finds that under the parity transformation

Y lm(θ, ϕ) → ( − 1 )l Y lm(θ, ϕ) (1604)

which shows that all states with a definite magnitude of the orbital angular mo-
mentum l are eigenstates of the parity operator and have the same eigenvalue.

Exercise:

Show that under a parity transformation the positive-energy solution for the
free Dirac particle ψ+

k,σ(x) transforms as

P̂ ψ+
k,σ(x) = ψ+

−k,σ(x) (1605)

while the negative-energy solutions ψ−
k,σ(x) transform as

P̂ ψ−
k,σ(x) = − ψ−

−k,σ(x) (1606)

Hence, the parity operation reverses the momentum and keeps the spin invari-
ant for the positive-energy and negative-energy solutions solution. The extra
negative sign implies that the negative-energy solution has opposite intrinsic
parity to the positive-energy solution.

Exercise:

Consider the parity transform as an example of an improper Lorentz trans-
formation Λ, for which det | Λ | = − 1. If the Lorentz transform is given
by

xµ′ = Λµν x
ν (1607)

the spinor wave function transforms via

ψ′(x′) = R̂(Λ) ψ(x) (1608)
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where R̂(Λ) “rotates” the spinor. The covariant condition for the Dirac equation
is

R̂−1(Λ) γµ R̂(Λ) = Λµν γ
ν (1609)

For a parity transformation, one has

xµ′ = xµ (1610)

since the spatial components of xµ change sign. Hence, for a parity transforma-
tion, the transformation matrix is determined as

Λµν = gµ,ν (1611)

which is an improper Lorentz transformation since

det | g | = − 1 (1612)

Therefore, the covariant condition reduces to

R̂−1(Λ) γµ R̂(Λ) = gµ,ν γ
ν (1613)

Solve for the matrix R̂(Λ) which shuffles the components of the Dirac spinor.

12.9 Bi-linear Covariants

Under an Lorentz transformation

xµ′ = Λµν x
ν (1614)

(where Λ0
0 > 0 for an orthochronous transformation), the Dirac spinor ψ

transforms according to
ψ′(x′) = R̂(Λ) ψ(x) (1615)

and the condition that the Dirac equation is covariant under the orthochronous
Lorentz transformation is

R̂−1(Λ) γµ R̂(Λ) = Λµν γ
ν (1616)

From the transformational properties of the Dirac spinors, together with the
identity

γ(0) R̂†(Λ) γ(0) = R̂−1(Λ) (1617)

one can find the transformational properties of quantities that are bi-linear in
the Dirac spinors.

Thus, for example, the bi-linear quantity ψ
†
ψ transforms according to

ψ
†′ ψ′ = ψ†′ γ(0) ψ′

= ψ† R̂†(Λ) γ(0) R̂(Λ) ψ

= ψ† ( γ(0) )2 R̂†(Λ) γ(0) R̂(Λ) ψ

= ψ† γ(0) R̂−1(Λ) R̂(Λ) ψ

= ψ
†
ψ (1618)
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Table 7: The sixteen bi-linear covariants ψ
†
Q̂ ψ for the Dirac equation.

Quantity Bi-linear Transformed Number of
Covariant Matrix Matrices

ψ
†
Q̂ ψ R̂−1(Λ) Q̂ R̂(Λ)

Scalar ψ
†
Î ψ Î 1

Vector ψ
†
γµ ψ Λµν γ

ν 4

Anti-symmetric Tensor ψ
†
σµ,ν ψ Λµρ Λντ σ

ρ,τ 6

Pseudo-scalar ψ
†
γ(4) ψ det | Λ | γ(4) 1

Axial-Vector ψ
†
γ(4) γµ ψ det | Λ | Λµν γ

(4) γν 4

where a factor of ( γ(0) )2 = Î has been used in the third line and the identity

has been used in the fourth. Thus, one finds that ψ
†
ψ transforms like a scalar.

Likewise, one can show that the bi-linear quantities ψ
†
γµ ψ transform like

the components of a four-vector. That is

ψ
†′ γµ ψ′ = ψ†′ γ(0) γµ ψ′

= ψ† R̂†(Λ) γ(0) γµ R̂(Λ) ψ

= ψ† ( γ(0) )2 R̂†(Λ) γ(0) γµ R̂(Λ) ψ

= ψ† γ(0) R̂−1(Λ) γµ R̂(Λ) ψ

= ψ
† R̂−1(Λ) γµ R̂(Λ) ψ

= Λµν ψ
†
γν ψ (1619)

where the covariant condition has been used in obtaining the last line. Since

this relation holds for Lorentz boosts, rotations and spatial inversions, ψ
†
γµ ψ

is a four-vector.

The anti-symmetric quantity σµ,ν defined as

σµ,ν =
i

2
[ γµ , γν ] (1620)

can be used to form a bi-linear quantity ψ
†
σµ,ν ψ. This bi-linear quantity
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transforms like a second-rank anti-symmetric tensor, since

ψ
†′ σµ,ν ψ′ = ψ†′ γ(0) σµ,ν ψ′

= ψ† R̂†(Λ) γ(0) σµ,ν R̂(Λ) ψ

= ψ† ( γ(0) )2 R̂†(Λ) γ(0) σµ,ν R̂(Λ) ψ

= ψ† γ(0) R̂−1(Λ) σµ,ν R̂(Λ) ψ

= ψ
† R̂−1(Λ) σµ,ν R̂(Λ) ψ (1621)

For µ 6= ν, the antisymmetric quantity σµ,ν can be written as

σµ,ν = i γµ γν (1622)

Therefore, one may re-express the bi-linear quantity as

ψ
†′ σµ,ν ψ′ = i ψ

† R̂−1(Λ) γµ γν R̂(Λ) ψ

= i ψ
† R̂−1(Λ) γµ R̂(Λ) R̂−1(Λ) γν R̂(Λ) ψ

= i ψ
†

Λµρ γ
ρ Λντ γ

τ ψ

= Λµρ Λντ ψ
†
σρ,τ ψ (1623)

where we have inserted a factor of Î = R̂(Λ) R̂−1(Λ) in the second line, and
used the covariant condition (twice) in the third line. Hence, the bi-linear quan-

tity ψ
†
σµ,ν ψ transforms like an anti-symmetric second-rank tensor.

One can define a quantity γ(4) in terms of a product of all the γ-matrices

γ(4) = i γ(0) γ(1) γ(2) γ(3) (1624)

It is easily verified that γ(4) anti-commutes with all the γµ,

{ γµ , γ(4) }+ = 0 (1625)

Furthermore, one has
( γ(4) )2 = Î (1626)

In the standard representation of the Dirac matrices, the matrix γ(4) has the
two by two block diagonal form

γ(4) =

(
0 I
I 0

)
(1627)

The quantity γ(4) can be used to construct a bi-linear covariant quantity ψ
†
γ(4) ψ.

Under an orthochronous Lorentz transformation, the bi-linear quantity trans-
form according to

ψ
†′ γ(4) ψ′ = ψ†′ γ(0) γ(4) ψ′
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= ψ† R̂†(Λ) γ(0) γ(4) R̂(Λ) ψ

= ψ† ( γ(0) )2 R̂†(Λ) γ(0) γ(4) R̂(Λ) ψ

= ψ
†
γ(0) R̂†(Λ) γ(0) γ(4) R̂(Λ) ψ

= ψ
† R̂−1(Λ) γ(4) R̂(Λ) ψ (1628)

A proper Lorentz transformation, such as a boost and a rotation, are generated
by the quantities σµ,ν which involves the anti-symmetrized product of the two
Dirac matrices γµ and γν . Since the matrices γµ and γν individual anti-commute
with γ(4), their product commutes with γ(4). Hence, one can commute γ(4) and
R̂(Λ). Therefore, the bi-linear quantity transforms as

ψ
†′(x′) γ(4) ψ′(x′) = ψ

†
(x) γ(4) ψ(x) (1629)

which behaves like a scalar under a proper orthochronous Lorentz transforma-
tion for which det | Λ | = 1. However, for an inversion where det | Λ | = − 1,
one has R̂(P) = γ(0) which anti-commutes with γ(4). Hence, for an inversion,
one has

ψ
†′(x′) γ(4) ψ′(x′) = − ψ

†
(x) γ(4) ψ(x) (1630)

so the quantity changes sign. In general, for an orthochronous transformation
one can show that

R̂−1(Λ) γ(4) R̂(Λ) = det | Λ | γ(4) (1631)

so one has
ψ
†′(x′) γ(4) ψ′(x′) = det | Λ | ψ†

(x) γ(4) ψ(x) (1632)

Therefore, the quantity ψ
†
γ(4) ψ transforms as a pseudo-scalar.

One can also define the bi-linear axial-vector ψ
†
γ(4) γµ ψ. From consid-

erations similar to those used previously, one can show that these quantities
transform according to

ψ
†′(x′) γ(4) γµ ψ′(x′) = det | Λ | Λµν ψ

†
(x) γ(4) γν ψ(x) (1633)

Hence, ψ
†
γ(4) γµ ψ transforms like a four-vector under proper orthochronous

Lorentz transformations. However, the spatial components do not change sign

under an inversion, but the time components do change sign. Therefore, ψ
†
γ(4) γµ ψ

transforms like an axial-vector.

Exercise:

Show that a modified Dirac equation described by

[
i h̄ γµ ( ∂µ + i

q

h̄ c
Aµ ) − i

κ q h̄

4 m c2
σµ,ν γ(4) Fµ,ν − m c Î

]
ψ = 0 (1634)
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is covariant under proper Lorentz transformations, but is not covariant under
improper transformations.

Show, by considering the non-relativistic limit, that the above equation de-
scribes an electron with an electric dipole moment. Determine an expression for
the electric dipole moment.

12.10 The Spherically Symmetric Dirac Equation

The Dirac Hamiltonian for a (electrostatic) spherically symmetric potential is
given by

Ĥ = c α . p̂ + β m c2 + Î V (r) (1635)

The angular momentum operator Ĵ and the parity operator P̂ commute with
the Hamiltonian Ĥ. Therefore, one can find simultaneous eigenstates of the
three operators Ĥ, Ĵ2, Ĵz and P̂. The energy eigenstates satisfy the equation

[
c α . p̂ + β m c2 + Î V (r)

]
ψ = E ψ (1636)

On writing the four-component spinor in terms of the two two-component
spinors φA and φB the energy eigenvalue equation reduces to the set of cou-
pled equations

( E − V (r) − m c2 ) φA(r) = c ( σ . p̂ ) φB(r)

( E − V (r) + m c2 ) φB(r) = c ( σ . p̂ ) φA(r) (1637)

In spherical polar coordinates, the operator ( σ . p̂ ) can be expressed as

( σ . p̂ ) = − i h̄

(
cos θ sin θ exp[−iϕ]

sin θ exp[+iϕ] − cos θ

)
∂

∂r

− i h̄

r

(
− sin θ cos θ exp[−iϕ]

cos θ exp[+iϕ] sin θ

)
∂

∂θ

− i h̄

r sin θ

(
0 − i exp[−iϕ]

i exp[+iϕ] 0

)
∂

∂ϕ

(1638)

which has a quite complicated structure. For future reference, it shall be noted
that the matrix part of the coefficient of the partial derivative w.r.t. r is simply
equal to (

r . σ

r

)
(1639)

which is independent of the radial coordinate r. The operator ( σ . p̂ ) can be
cast in a more convenient form through the repeated use of the Pauli identity.
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First, the 2 × 2 unit matrix can be written as

I =

(
r . σ

r

)2

(1640)

since different Pauli spin matrices anti-commute

{ σ(i) , σ(j) }+ = 2 δi,j Î (1641)

and are their own inverses. Therefore, one can express the operator ( σ . p̂ ) as

( σ . p̂ ) =

(
r . σ

r

)2

( σ . p̂ )

=

(
r . σ

r2

)
( r . σ ) ( σ . p̂ )

=

(
r . σ

r2

) (
r . p̂ + i σ . ( r ∧ p̂ )

)

=

(
r . σ

r2

) (
− i h̄ r

∂

∂r
+ i σ . L̂

)

=

(
r . σ

r2

) (
− i h̄ r

∂

∂r
+

2 i

h̄
S . L̂

)
(1642)

where the Pauli identity has been used in going between the second and third
lines. Therefore, the two-component spinors satisfy the set of coupled equations

( E − V (r) − m c2 ) φA(r) = c

(
r . σ

r2

) (
− i h̄ r

∂

∂r
+

2 i

h̄
S . L̂

)
φB(r)

( E − V (r) + m c2 ) φB(r) = c

(
r . σ

r2

) (
− i h̄ r

∂

∂r
+

2 i

h̄
S . L̂

)
φA(r)

(1643)

It is seen that, due to the effect of special relativity, the Dirac equation results
in the coupling of the spin and the orbital angular momentum.

Two-Component Spinor Spherical Harmonics

The angular dependence of the two-component wave functions φA(r) and
φB(r) are determined by the eigenvalue equations for the magnitude and the
z-components of the total angular momentum

J = L + S (1644)

Thus, the two-component spinor eigenstates of total angular momentum Ωlj,jz (θ, ϕ)
which describes the angular dependence, are formed by combining states of or-
bital angular momentum l, represented by Y lm(θ, ϕ), and the spin eigenfunction
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Table 8: The Clebsch-Gordon Coefficients for adding orbital angular momentum
(l,m) with spin quantum numbers (1

2 , sz) to yield a state with total angular
momentum quantum numbers (j, jz). The allowed values of m are given by
jz = m+ sz.

sz = +1
2 sz = − 1

2

j = l + 1
2

√
l + jz + 1

2

2 l + 1

√
l − jz + 1

2

2 l + 1

j = l − 1
2 -

√
l − jz + 1

2

2 l + 1

√
l +jz + 1

2

2 l + 1

χ±. On combining states with orbital angular momentum l and spin s = 1
2 , one

finds states with total angular momentum which satisfy

l +
1

2
≥ j ≥ l − 1

2
(1645)

Thus, it is found that the possible eigenstates correspond to j = l + 1
2 and

j = l − 1
2 . Furthermore, the corresponding eigenfunctions are expressed as

Ωl
l+ 1

2 ,jz
(θ, ϕ) =

√
l + 1

2 + jz

2l + 1
Y l
jz− 1

2
(θ, ϕ) χ+ +

√
l + 1

2 − jz

2l + 1
Y l
jz+ 1

2
(θ, ϕ) χ−

Ωl
l− 1

2 ,jz
(θ, ϕ) = −

√
l + 1

2 − jz

2l + 1
Y l
jz− 1

2
(θ, ϕ) χ+ +

√
l + 1

2 + jz

2l + 1
Y l
jz+ 1

2
(θ, ϕ) χ−

(1646)

where the coefficients are identified with the Clebsch-Gordon coefficients given
in Table(8). The functions Ωlj,jz (θ, ϕ) are the analogue of the spherical harmon-

ics Y lm(θ, ϕ) in relativistic problems where spin and orbital angular momentum
are coupled.

However, since orbital angular momentum is not a good quantum number,
the angular dependence of the eigenstates of the Dirac Hamiltonian can be
expressed as a linear superposition of states with different values of the orbital
angular momentum l. For a fixed value of j, one finds that the possible values
of the orbital angular momentum l are determined by

j = l +
1

2

j = l′ − 1

2
(1647)
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where l′ = l + 1. The appropriate two-component spinor angular momentum
eigenstate with quantum numbers (j, jz) found by combining a spin one-half
and orbital angular momentum l′ = (l + 1) is given by

Ωl+1
l+ 1

2 ,jz
(θ, ϕ) = −

√
l + 3

2 − jz

2l + 3
Y l+1
jz− 1

2

(θ, ϕ) χ+ +

√
l + 3

2 + jz

2l + 3
Y l+1
jz+ 1

2

(θ, ϕ) χ−

(1648)

As shall be seen later, the two-component spinors Ωl
′

l′− 1
2 ,jz

(θ, ϕ) and Ωl
l+ 1

2 ,jz
(θ, ϕ)

have opposite parities. In fact, the two-component spinors generated by angular
momentum l and l′ = (l + 1) are related by the action of the pseudo-scalar

(
r . σ

r

)
=

(
cos θ sin θ exp[−iϕ]

sin θ exp[+iϕ] − cos θ

)
(1649)

which changes sign under a parity transformation, (θ, ϕ) → (π− θ, ϕ+ π). The
explicit relationship is given by

(
r . σ

r

)
Ωlj,jz (θ, ϕ) = − Ωl+1

j,jz
(θ, ϕ) (1650)

as can be shown by examination of Table(1). Likewise, on using the identity

(
r . σ

r

)2

= I (1651)

one finds that the inverse relationship between the two-component spinors is
also given by (

r . σ

r

)
Ωl+1
j,jz

(θ, ϕ) = − Ωlj,jz (θ, ϕ) (1652)

Therefore, one concludes that the two angular momentum eigenstates have dif-
ferent properties under the spatial inversion transformation r → −r.

——————————————————————————————————

Mathematical Interlude:
The Action of the Operator ( r̂ . σ ) on the Spinor Spherical Harmon-

ics Ω
j± 1

2
j,jz

(θ, ϕ).

Here, it will be argued that the spinor spherical harmonics satisfy the equa-
tions

(
r . σ

r

)
Ω
j+ 1

2
j,jz

(θ, ϕ) = − Ω
j− 1

2
j,jz

(θ, ϕ)

(
r . σ

r

)
Ω
j− 1

2
j,jz

(θ, ϕ) = − Ω
j+ 1

2
j,jz

(θ, ϕ) (1653)
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The components of the total angular momentum

Ĵ (i) = L̂(i) + Ŝ(i) (1654)

commute with ( r . Ŝ ). That is

[ Ĵ (i) , ( r . Ŝ ) ] = 0 (1655)

The complete proof of this statement immediately follows from the proof of the
relation for any one component Ĵ (i), since ( r . Ŝ ) is spherically symmetric.
Thus, for i = 1, one has

[ Ĵ (1) , ( r . Ŝ ) ] = [ L̂(1) + Ŝ(1) , x(1) Ŝ(1) + x(2) Ŝ(2) + x(3) Ŝ(3) ]

= Ŝ(2) [ L̂(1) , x(2) ] + Ŝ(3) [ L̂(1) , x(3) ]

+ x(2) [ Ŝ(1) , Ŝ(2) ] + x(3) [ Ŝ(1) , Ŝ(3) ] (1656)

Using the commutation relations

[ Ŝ(i) , Ŝ(j) ] = i h̄ εi,j,k Ŝ(k) (1657)

and
[ L̂(i) , x(j) ] = i h̄ εi,j,k x(k) (1658)

one finds that

[ Ĵ (1) , ( r . Ŝ ) ] = i h̄

(
Ŝ(2) x(3) − Ŝ(3) x(2) + x(2) Ŝ(3) − x(3) Ŝ(2)

)

= 0 (1659)

which was to be shown. From repeated use of the above commutation relations
which involve the components Ĵ (i), it immediately follows that

[ Ĵ
2
, ( r . Ŝ ) ] = 0 (1660)

Thus, since Ω
j± 1

2
j,jz

is a simultaneous eigenstate of Ĵ
2

and Ĵ (3) and because these

operators commute with ( r . Ŝ ), then ( r . Ŝ ) Ω
j± 1

2
j,jz

is also a simultaneous
eigenstate with eigenvalues (j, jz).

Since the states ( r . Ŝ ) Ω
j± 1

2
j,jz

are simultaneous eigenstates of Ĵ
2

and Ĵ (3)

with eigenvalues (j, jz), and because this subspace is spanned by the basis com-

posed of the two states Ω
j± 1

2
j,jz

(θ, ϕ), the transformed states can be decomposed
as
(
r . σ

r

)
Ω
j+ 1

2
j,jz

(θ, ϕ) = C++(j, jz) Ω
j+ 1

2
j,jz

(θ, ϕ) + C+−(j, jz) Ω
j− 1

2
j,jz

(θ, ϕ)

(
r . σ

r

)
Ω
j− 1

2
j,jz

(θ, ϕ) = C−+(j, jz) Ω
j+ 1

2
j,jz

(θ, ϕ) + C−−(j, jz) Ω
j− 1

2
j,jz

(θ, ϕ)

(1661)
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where the coefficients C±,±(j, jz) will be determined below.

First, we shall show that the coefficients C±,±(j, jz) are independent of jz.

This follows as Ĵ± commutes with ( r . Ŝ ) since all the components Ĵ (i) com-
mute with ( r . Ŝ ). Thus, one has

Ĵ±
(
r . σ

r

)
Ω
j+ 1

2
j,jz

(θ, ϕ) =

(
r . σ

r

)
Ĵ± Ω

j+ 1
2

j,jz
(θ, ϕ) (1662)

and

Ĵ±
(
r . σ

r

)
Ω
j+ 1

2
j,jz

(θ, ϕ) = C++(j, jz) Ĵ
± Ω

j+ 1
2

j,jz
(θ, ϕ) + C+−(j, jz) Ĵ

± Ω
j− 1

2
j,jz

(θ, ϕ)

(
r . σ

r

)
Ĵ± Ω

j+ 1
2

j,jz
(θ, ϕ) = C++(j, jz ± 1) Ĵ± Ω

j+ 1
2

j,jz
(θ, ϕ) + C+−(j, jz ± 1) Ĵ± Ω

j− 1
2

j,jz
(θ, ϕ)

(1663)

Hence, on comparing the linearly-independent terms on the left-hand sides, one
concludes that

C++(j, jz ± 1) = C++(j, jz)

C+−(j, jz ± 1) = C+−(j, jz) (1664)

etc. Therefore, the coefficients C±,±(j, jz) are independent of the value of jz.
Henceforth, we shall omit the index jz in C±,±(j, jz).

From considerations of parity, it can be determined that C++(j) = C−−(j) =
0. Under the parity transformation r → − r, one has

Ω
j± 1

2
j,jz

(θ, ϕ) → ( − 1 )j±
1
2 Ω

j± 1
2

j,jz
(θ, ϕ) (1665)

which follows from the properties of the spherical harmonics Y lm(θ, ϕ) under the
parity transformation. Also one has

(
r . σ

r

)
→ −

(
r . σ

r

)
(1666)

under the parity transform. Thus, after the parity transform, one finds that the
transformed states have the decompositions

(
r . σ

r

)
Ω
j+ 1

2
j,jz

(θ, ϕ) = − C++(j) Ω
j+ 1

2
j,jz

(θ, ϕ) + C+−(j) Ω
j− 1

2
j,jz

(θ, ϕ)

(
r . σ

r

)
Ω
j− 1

2
j,jz

(θ, ϕ) = C−+(j) Ω
j+ 1

2
j,jz

(θ, ϕ) − C−−(j) Ω
j− 1

2
j,jz

(θ, ϕ)

(1667)

which by comparison with eqn(1661) leads to the identification

C++(j) = C−−(j) = 0 (1668)
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Therefore, recalling that the coefficients are independent of jz, one can express
the effect of the operator on the spinor spherical harmonics as

(
r . σ

r

)
Ω
j+ 1

2
j,jz

(θ, ϕ) = C+−(j) Ω
j− 1

2
j,jz

(θ, ϕ)

(
r . σ

r

)
Ω
j− 1

2
j,jz

(θ, ϕ) = C−+(j) Ω
j+ 1

2
j,jz

(θ, ϕ) (1669)

Furthermore, since (
r . σ

r

)2

= I (1670)

one obtains the condition

C+−(j) C−+(j) = 1 (1671)

This condition can be made more restrictive as

(
r . σ

r

)
is Hermitean, which

leads to
C+−(j) = C−+(j)∗ (1672)

The above two equations suggest that C−+(j) and C+−(j) are pure phase fac-
tors, such as

C+−(j) = exp

[
+ i φ(j)

]

C−+(j) = exp

[
− i φ(j)

]
(1673)

The phase factor can be completely determined by considering the relations
(1669) with specific choices of the values of (θ, ϕ). As can be seen by examining
the case where ϕ = 0, the phase φ(j) is either zero or π. For the case ϕ = 0,
the operator simplifies to

(
r . σ

r

)
=

(
cos θ sin θ
sin θ − cos θ

)
(1674)

The spinor spherical harmonics are given by

Ω
j+ 1

2
j,jz

(θ, ϕ) =


 −

√
j+1−jz
2j+2 Y

j+ 1
2

jz− 1
2

(θ, ϕ)

+
√

j+1+jz
2j+2 Y

j+ 1
2

jz+ 1
2

(θ, ϕ)




Ω
j− 1

2
j,jz

(θ, ϕ) =




√
j+jz
2j Y

j− 1
2

jz− 1
2

(θ, ϕ)
√

j−jz
2j Y

j− 1
2

jz+ 1
2

(θ, ϕ)


 (1675)

which becomes real for ϕ = 0 since the spherical harmonics become real. Hence,
on inspecting eqn(1669) with ϕ = 0, one concludes that the phase factors are
equal and are purely real. That is

C+−(j) = C−+(j) = ± 1 (1676)
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Finally, by considering θ = 0, for which

(
r . σ

r

)
=

(
1 0
0 −1

)
(1677)

and the spherical harmonics reduce

Y
j± 1

2

jz∓ 1
2

(0, ϕ) =

√
2j + 1 ± 1

4 π
δjz∓ 1

2 ,0
(1678)

one finds that, for fixed j, only the four spinor spherical harmonics Ω
j± 1

2
j,jz

(0, ϕ)

Ω
j+ 1

2
j,jz

(0, ϕ) =


 −

√
2j+1
8 π

δjz− 1
2 ,0

+
√

2j+1
8 π

δjz+ 1
2 ,0




Ω
j− 1

2
j,jz

(0, ϕ) =



√

2j+1
8 π

δjz− 1
2 ,0√

2j+1
8 π

δjz+ 1
2 ,0


 (1679)

are non-zero. The spinor spherical harmonics with θ = 0 are connected via

(
1 0
0 −1

)
Ω
j± 1

2

j,± 1
2

(0, ϕ) = − Ω
j∓ 1

2

j,± 1
2

(0, ϕ) (1680)

Hence, one has determined that

C+−(j) = C−+(j) = − 1 (1681)

which holds independent of the values of θ and j, so the effect of the operator
on the spinor spherical harmonics is completely specified by

(
r . σ

r

)
Ω
j+ 1

2
j,jz

(θ, ϕ) = − Ω
j− 1

2
j,jz

(θ, ϕ)

(
r . σ

r

)
Ω
j− 1

2
j,jz

(θ, ϕ) = − Ω
j+ 1

2
j,jz

(θ, ϕ) (1682)

as was to be shown.

——————————————————————————————————

The Ansatz

If one only considers the spatial part of the parity operator, P̂ , the two-
component spinor states Ωl

′

l′± 1
2 ,jz

(θ, ϕ) have parities (−1)l
′

P̂ Ωl
′

l′± 1
2 ,jz

(θ, ϕ) = (−1)l
′

Ωl
′

l′± 1
2 ,jz

(θ, ϕ) (1683)
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Furthermore, as has been seen, the upper and lower two-component spinors of
the four-component Dirac spinor must have opposite intrinsic parity. Therefore,
the desired simultaneous eigenstates for the relativistic electron can be either
represented by the four-component Dirac spinor ψ−

j,jz
(r) with parity (−1)l =

(−1)(l+
1
2− 1

2 ) of the form

ψ−
l+ 1

2 ,jz
(r) =




f−(r)
r

Ωl
l+ 1

2 ,jz
(θ, ϕ)

i g
−(r)
r

Ωl+1
l+ 1

2 ,jz
(θ, ϕ)


 (1684)

or by ψ+
j,jz

(r)

ψ+
l+ 1

2 ,jz
(r) =




f+(r)
r

Ωl+1
l+ 1

2 ,jz
(θ, ϕ)

i g
+(r)
r

Ωl
l+ 1

2 ,jz
(θ, ϕ)


 (1685)

which has parity (−1)l+
1
2+ 1

2 . In these expressions f±(r) and g±(r) are scalar
radial functions that have to be determined as solutions of the radial equation.
These states do not correspond to definite values of the orbital angular mo-
mentum since the upper and lower two-component spinors correspond to the
different values of either l or l′ = l + 1 for the orbital angular momentum.

To condense the notation, the energy eigenstates will be written in the com-
pact form

ψ±
j,jz

(r) =

(
f±(r)
r

ΩlAj,jz (θ, ϕ)

i g
±(r)
r

ΩlBj,jz (θ, ϕ)

)
(1686)

where lA = j ± 1
2 and lB = j ∓ 1

2 .

The Radial Equation

We shall find the radial Dirac equation for the solution ψ±
j,jz

(r). The Dirac
spinor wave functions in eqn(1685) and eqn(1684) are substituted into eqns(1643).
The spin-orbit interaction term can be evaluated by squaring the expression

Ĵ = L̂ + S (1687)

which leads to the identity

S . L̂ =
1

2

(
Ĵ

2 − L̂
2 − S2

)
(1688)

When this operator acts on the relativistic two-component spinor spherical har-
monic ΩlAj,jz , one finds

S . L̂ ΩlAj,jz =
h̄2

2

(
j ( j + 1 ) − lA ( lA + 1 ) − 3

4

)
ΩlAj,jz (1689)
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which for j = lA + 1
2 yields

S . L̂ ΩlAj,jz =
h̄2

2
( j − 1

2
) ΩlAj,jz (1690)

and for j = lA − 1
2 , one obtains

S . L̂ ΩlAj,jz = − h̄2

2
( j +

3

2
) ΩlAj,jz (1691)

The Dirac equation can be written in the general form

( E − V (r) − m c2 )
f(r)

r
ΩlAj,jz = c h̄

(
r . σ

r2

) (
r
∂

∂r
− 2

h̄2 S . L̂

)
g(r)

r
ΩlBj,jz

( E − V (r) + m c2 )
g(r)

r
ΩlBj,jz = − c h̄

(
r . σ

r2

) (
r
∂

∂r
− 2

h̄2 S . L̂

)
f(r)

r
ΩlAj,jz

(1692)

Following Dirac, it is customary to define an integer κ in terms of the eigenvalues
of S . L̂ via

( S . L̂ ) ΩlAj,jz = − h̄2

2
( 1 + κ ) ΩlAj,jz

( S . L̂ ) ΩlBj,jz = − h̄2

2
( 1 − κ ) ΩlBj,jz (1693)

Therefore, if ΩlAj,jz = Ω
j+ 1

2
j,jz

, i.e. j = lA − 1
2 , then κ = (j + 1

2 ).

Otherwise, if ΩlAj,jz = Ω
j− 1

2
j,jz

, i.e. j = lA + 1
2 , then κ = − (j + 1

2 ).

On substituting the above expressions in the Dirac energy eigenvalue equa-
tion for ψj,jz (r) one finds

( E − V (r) − m c2 )
f(r)

r
ΩlAj,jz = c h̄

(
r . σ

r2

) (
r
∂

∂r
+ 1 − κ

)
g(r)

r
ΩlBj,jz

( E − V (r) + m c2 )
g(r)

r
ΩlBj,jz = − c h̄

(
r . σ

r2

) (
r
∂

∂r
+ 1 + κ

)
f(r)

r
ΩlAj,jz

(1694)

Since the radial spin projection operator is independent of r, it can be com-
muted to the right of the differential operator in the large parenthesis. Then on
using either the relation given in eqn(1650) or in eqn(1651), one finds that the
relativistic spherical harmonics factor out of the equations, leading to

( E − V (r) − m c2 )
f(r)

r
= − c h̄

(
∂

∂r
+

1 − κ

r

)
g(r)

r

( E − V (r) + m c2 )
g(r)

r
= c h̄

(
∂

∂r
+

1 + κ

r

)
f(r)

r

(1695)
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Table 9: The Relationship between j, lA, lB , κ and Parity. The parity eigenvalue

is given by ηp = (−1)l
A

and κ = ±(j + 1
2 ).

κ lA lB Parity

κ = (j + 1
2 ) j + 1

2 j − 1
2 (−1)κ

κ = −(j + 1
2 ) j − 1

2 j + 1
2 (−1)1−κ

Therefore, the Dirac radial equation consists of the two coupled first-order dif-
ferential equations for f(r) and g(r). On multiplying by a factor of r and
simplifying the derivatives of f(r)/r, one finds the pair of more symmetrical
equations

( E − V (r) − m c2 ) f(r) + c h̄

(
∂

∂r
− κ

r

)
g(r) = 0

( E − V (r) + m c2 ) g(r) − c h̄

(
∂

∂r
+

κ

r

)
f(r) = 0

(1696)

The above pair of equations are the central result of this lecture.

The Probability Density in Spherical Polar Coordinates.

The probability density P (r) that an electron, in an energy eigenstate of a
spherically symmetric potential, is found in the vicinity of the point (r, θ, ϕ) is
given by

P (r) = ψ†(r) ψ(r)

=

( |f(r)|2
r2

)
ΩlAj,jz (θ, ϕ)

†
ΩlAj,jz (θ, ϕ) +

( |g(r)|2
r2

)
ΩlBj,jz (θ, ϕ)

†
ΩlBj,jz (θ, ϕ)

(1697)

However, due to the identity

ΩlAj,jz (θ, ϕ)† ΩlAj,jz (θ, ϕ) = ΩlBj,jz (θ, ϕ)† ΩlBj,jz (θ, ϕ) = Aj,|jz|(θ) (1698)

the probability is independent of the azimuthal angle ϕ and the sign of jz (just
like in the non-relativistic case) and has a common angular factor of Aj,|jz|(θ).
Thus, the probability distribution factorizes into a radial and the angular factor

P (r) =

( |f(r)|2
r2

+
|g(r)|2
r2

)
Aj,|jz|(θ) (1699)
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Table 10: Relativistic Angular Distribution Functions

j |jz| Aj,|jz|(θ)

1
2

1
2

1
4 π

3
2

1
2

1
8 π

( 1 + 3 cos2 θ )

3
2

3
2

3
8 π

sin2 θ

5
2

1
2

3
16 π

( 1 − 2 cos2 θ + 5 cos4 θ )

5
2

3
2

3
32 π

sin2 θ ( 1 + 15 cos2 θ )

5
2

5
2

15
32 π

sin4 θ

The angular distribution function for a closed shell is given by the sum over the
angular distribution functions. Due to the identity,

j∑

jz=−j
Aj,|jz|(θ) =

2 j + 1

4 π
(1700)

one finds that closed shells are spherically symmetric, as is expected. The first
few angular dependent factors Aj,|jz|(θ) are given in Table(10) and the corre-
sponding non-relativistic angular factors are given in Table(11). On compar-
ing the relativistic angular dependent factors with the non-relativistic factors
|Y lm(θ, ϕ)|2, one finds that they are identical for |jz| = j. Since the relativistic
distribution is the sum of two generally different positive definite forms origi-
nally associated with the two spinors χ+ and χ−, it generally does not go to
zero for non-zero values of θ.

12.10.1 The Hydrogen Atom

The radial energy eigenvalue equation for a hydrogenic-like atom is given by

( E +
Z e2

r
− m c2 ) f(r) + c h̄

(
∂

∂r
− κ

r

)
g(r) = 0

( E +
Z e2

r
+ m c2 ) g(r) − c h̄

(
∂

∂r
+

κ

r

)
f(r) = 0

(1701)
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Figure 48: The relativistic (left) and non-relativistic (right) angular distribu-
tions Aj,|jz|(θ) for j = 1

2 and j = 3
2 .
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Figure 49: The relativistic (left) and non-relativistic (right) angular distribu-
tions Aj,|jz|(θ) for j = 5

2 .

289



Table 11: Non-Relativistic Angular Distribution Functions

l |m| Al,|m|(θ)

0 0 1
4 π

1 0 3
4 π

cos2 θ

1 1 3
8 π

sin2 θ

2 0 5
16 π

( 1 − 3 cos2 θ )2

2 1 15
8 π

sin2 θ cos2 θ

2 2 15
32 π

sin4 θ

The above equations will be written in dimensionless units, where the energy is
expressed in terms of the rest mass m c2 and lengths are expressed in terms of
the Compton wave length h̄

m c
. A dimensionless energy ǫ is defined as the ratio

of E to the rest mass energy

ǫ =
E

m c2
(1702)

For a bound state, m c2 > E > − m c2 so the value of the magnitude of
ǫ is expected to be a little less than unity. A dimensionless radial variable ρ is
introduced which governs the asymptotic large r decay of the bound state wave
function. The variable is defined by

ρ =
√

1 − ǫ2
(
r m c

h̄

)
(1703)

In terms of these dimensionless variables, the Dirac radial equations for the
hydrogen-like atom become

(
−
√

1 − ǫ

1 + ǫ
+

γ

ρ

)
f +

(
∂

∂ρ
− κ

ρ

)
g = 0

( √
1 + ǫ

1 − ǫ
+

γ

ρ

)
g −

(
∂

∂ρ
+

κ

ρ

)
f = 0 (1704)

where

γ =

(
Z e2

h̄ c

)
(1705)
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is a small number.

Boundary Conditions

The asymptotic ρ → ∞ form of the solution can be found from the asymp-
totic form of the equations

−
√

1 − ǫ

1 + ǫ
f +

∂

∂ρ
g ∼ 0

√
1 + ǫ

1 − ǫ
g − ∂

∂ρ
f ∼ 0 (1706)

Hence, on combing these equations, one sees that the asymptotic form of the
equation is given by

∂2f

∂ρ2
= f (1707)

Therefore, one has

f ∼ A exp

[
− ρ

]
+ B exp

[
+ ρ

]
(1708)

and, likewise, g has a similar exponential form. If the solution is to be nor-
malizable, then the coefficient B in front of the increasing exponential must be
exactly zero (B ≡ 0).

The asymptotic ρ→ 0 behavior of the solution can be found from

γ f +

(
ρ
∂

∂ρ
− κ

)
g = 0

γ g −
(
ρ
∂

∂ρ
+ κ

)
f = 0 (1709)

where it has been noted that both the angular momentum term κ and the
Coulomb potential γ govern the small ρ variation, while the mass and en-
ergy terms are negligible. This is in contrast to the case of the non-relativistic
Schrödinger equation with the Coulomb potential, where for small r the Coulomb
potential term is negligible in comparison with the centrifugal potential. We
shall make the ansatz for the asymptotic small ρ variation

f ∼ A ρs

g ∼ B ρs (1710)

where the exponent s is an unknown constant and then substitute the ansatz in
the above equations. This procedure yields the coupled algebraic equations

γ A + ( s − κ ) B = 0

γ B − ( s + κ ) A = 0 (1711)
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Hence, it is found that the exponent s is determined as solutions of the indicial
equation which is a quadratic equation. The solutions are given by

s = ±
√
κ2 − γ2 (1712)

Since, the wave function must be normalizable near ρ→ 0,

lim
η→0

∫

η

dr

(
| f |2 + | g |2

)
< ∞ (1713)

one must choose the positive solution for s. Normalizability near the origin
requires that 2 s > − 1. Hence, one may set

s =
√
κ2 − γ2 (1714)

This will be a good solution for κ = − 1 if Z does not exceed a critical value.
For values of Z greater than ≈ 172, the point charge can spark the vacuum
and spontaneously generate electron-positron pairs109. The solution with the
negative value of s given by

s = −
√
κ2 − γ2 (1715)

could also possibly exist and be normalizable if γ is greater than a critical value
γc determined as

1

2
=
√

1 − γ2
c (1716)

This critical value of γ is found from

γc =

√
3

2
(1717)

which corresponds to Zc ∼ 118. The solutions corresponding to negative s
are, infact, un-physical and do not survive if the nucleus is considered to have
a finite spatial extent.

The Fröbenius Method

We shall use the Fröbenius method to find a solution. The solutions of the
radial equation shall be written in the form

f(r) = exp

[
− ρ

]
ρs F (ρ)

g(r) = exp

[
− ρ

]
ρs G(ρ) (1718)

109H. Backe, L. Handschug, F. Hessberger, E. Kankeleit, L. Richter, F. Weik, R. Willwater,
H. Bokemeyer, P. Vincent, Y. Nakayama, and J. S. Greenberg, Phys. Rev. Lett. 40, 1443
(1978).
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This form incorporates the appropriate boundary conditions at ρ → 0 and
ρ→ ∞. The coupled radial equations are transformed to

(
−
√

1 − ǫ

1 + ǫ
ρ + γ

)
F +

(
ρ
∂

∂ρ
+ s − κ − ρ

)
G = 0

( √
1 + ǫ

1 − ǫ
ρ + γ

)
G −

(
ρ
∂

∂ρ
+ s + κ − ρ

)
F = 0

(1719)

The functions F (ρ) and G(ρ) can be expressed as an infinite power series in ρ

F (ρ) =
∞∑

n=0

an ρ
n

G(ρ) =
∞∑

n=0

bn ρ
n (1720)

where the coefficients an and bn are constants which have still to be determined.
The coefficients are determined by substituting the series in the differential
equation and then equating the coefficients of the same power in ρ. Equating
the coefficient of ρn yields the set of relations

(
−
√

1 − ǫ

1 + ǫ
an−1 + γ an

)
+ ( n + s − κ ) bn − bn−1 = 0

( √
1 + ǫ

1 − ǫ
bn−1 + γ bn

)
− ( n + s + κ ) an + an−1 = 0

(1721)

This equation is automatically satisfied for n = 0, since by definition a−1 =
b−1 ≡ 0 so the equation reduces to the indicial equation for s. These relations
yield recursion relations between the coefficients (an, bn) with different values of
n. The form of the recursion relation can be made explicit by using a relation
between an and bn valid for any n. This relation is found by multiplying the
first relation of eqn(1721) by the factor

√
1 + ǫ

1 − ǫ
(1722)

and adding it to the second, one sees that the coefficients with index n − 1
vanish. This process results in the equation

( √
1 + ǫ

1 − ǫ
γ − ( n + s + κ )

)
an +

(
γ +

√
1 + ǫ

1 − ǫ
( n + s − κ )

)
bn = 0

(1723)

valid for any n. The above equation can be used to eliminate the coefficients
bn and yield a recursion relation between an and an−1. The ensuing recursion
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relation will enable us to explicitly calculate the wave functions G(ρ) and hence
F (ρ).

Truncation of the Series

The behavior of the recursion relation for large values of n can be found by
noting that eqn(1723) yields

n an ∼
√

1 + ǫ

1 − ǫ
n bn (1724)

which when substituted back into the large n limit of the first relation of
eqn(1721) yields

n an ∼ 2 an−1 (1725)

Since the large ρ limit of the function is dominated by the highest powers of
ρ, it is seen that if the series does not terminate, the functions F (ρ) and G(ρ)
would be exponentially growing functions of ρ

F (ρ) ∼ exp

[
+ 2 ρ

]

G(ρ) ∼ exp

[
+ 2 ρ

]
(1726)

Therefore, the set of recursion relations must terminate, since if the series does
not terminate, the large ρ behavior of the functions F (ρ) and G(ρ) would gov-
erned by the growing exponentials. Even when combined with the decaying
exponential term that appear in the relations

f(r) = ρs F (ρ) exp

[
− ρ

]

g(r) = ρs G(ρ) exp

[
− ρ

]
(1727)

the resulting functions f(r) and g(r) would not satisfy the required boundary
conditions at ρ → ∞. We shall assume that the series truncate after the nr-th
terms. That is, it is possible to set

anr+1 = 0

bnr+1 = 0 (1728)

Thus, the components of the radial wave function may have nr nodes. Assuming
that the coefficients with indices nr + 1 vanish and using the first relation in
eqn(1721) with n = nr + 1, one obtains the condition

√
1 + ǫ

1 − ǫ
bnr

= − anr
(1729)
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A second condition is given by the relation between an and bn
( √

1 + ǫ

1 − ǫ
γ − ( n + s + κ )

)
an +

(
γ +

√
1 + ǫ

1 − ǫ
( n + s − κ )

)
bn = 0

(1730)

valid for any n. We shall set n = nr and then eliminate anr
using the termination

condition expressed by eqn(1729). After some simplification, this leads to the
equation

ǫ γ = ( nr + s )
√

1 − ǫ2 (1731)

This equation determines the square of the dimensionless energy eigenvalue ǫ2.
On squaring this equation, simplifying and taking the square root, one finds

ǫ = ± ( nr + s )√
( nr + s )2 + γ2

(1732)

or, equivalently, the energy of the hydrogen atom110 is given by

E = ± m c2√
1 + γ2

( nr + s )2

(1733)

where

s =

√
( j +

1

2
)2 − γ2 (1734)

This expression for the energy eigenvalue is independent of the sign of κ and,
therefore, it holds for both cases

j = ( l + 1 ) − 1

2

j = l +
1

2
(1735)

Hence, the energy eigenstates are predicted to be doubly degenerate (in addition
to the (2j+ 1) degeneracy associated with j3), since states with the same j but
have different values of l′ have the same energy. If the positive-energy eigenvalue
is expanded in powers of γ, one obtains

E ≈ m c2 − 1

2
m c2

γ2

( nr + j + 1
2 )2

+ . . . (1736)

which agrees with the energy eigenvalues found from the non-relativistic Schrödinger
equation. However, as has been seen, the exact energy eigenvalue depends on
nr and (j+ 1

2 ) separately, as opposed to being a function of the principle quan-
tum number n which is defined as the sum n = nr + j + 1

2 . Hence, the Dirac

110C. G. Darwin, Proc. Roy. Soc. A 118, 654 (1928).
C. G. Darwin, Proc. Roy. Soc. A 120, 621 (1928).
W. Gordon, Zeit. für Physik, 48, 11 (1928).
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equation lifts the degeneracy between states with different values of the angular
momentum. The energy levels together with their quantum numbers are shown
in Table(12). The energy splitting between states with the same n and different
j values has a magnitude which is governed by the square of the fine structure

constant Z ( e
2

h̄ c
). That is

E ≈ m c2
[

1 − 1

2

γ2

( nr + j + 1
2 )2

− 1

2

γ4

( nr + j + 1
2 )3

(
1

( j + 1
2 )

− 3

4 ( nr + j + 1
2 )

)
+ . . .

]

(1737)

The fine structure splittings for H-like atoms was first observed by Michelson111

and the theoretical prediction is in agreeement with the accurate measurements
of Paschen112. The fine structure splitting is important for atoms with larger Z.
This observation has a classical interpretation which reflects the fact that for
large Z the electrons move in orbits with smaller radii and, therefore, the elec-
trons must move faster. Relativistic effects become more important for electrons
which move faster, and this occurs for atoms with larger values of Z. Although
the fine structure splitting does remove some degeneracy, the two states with
the same principle quantum number n and the same angular momentum j but
which have different values of l are still predicted to be degenerate. Thus, for
example, the 2Sj= 1

2
and the 2Pj= 1

2
states of Hydrogen are predicted to be de-

generate by the Dirac equation. It has been shown that this degeneracy is
removed by the Lamb shift, which is due to the interaction of an electron with
its own radiation field. The Lamb shift is smaller than the fine structure shifts
discussed above because it involves an extra factor of e2

h̄ c
.

The Ground State Wave Function

The ground state wave function of the hydrogen atom is slightly singular
at the origin. This can be seen by noting that it corresponds to nr = 0 and
κ = −1. Since the dimensionless energy is given by the expression

ǫ =
√

1 − γ2 (1738)

one finds that the dimensionless radial distance ρ is simply given by

ρ =
√

1 − ǫ2
(
r m c

h̄

)

= γ

(
m c

h̄

)
r

=
Z e2 m

h̄2 r (1739)

111A. A. Michelson, Phil. Mag. 31, 338 (1891).
112F. Paschen, Ann. Phys. 50, 901 (1916).
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Table 12: The Equivalence between Relativistic and Spectroscopic Quantum
Numbers.

n = nr + |κ| nr κ = ±(j + 1
2 ) nLj Degenerate

(
E

m c2

)

Partner

1 0 -1 1S 1
2

√
1 − γ2

2 1 -1 2S 1
2

2P 1
2

√
1 − γ2

2+2
√

1−γ2

2 1 +1 2P 1
2

2S 1
2

- -

2 0 -2 2P 3
2

√
1 − 1

4 γ
2

3 2 -1 3S 1
2

3P 1
2

√
1 − γ2

5+4
√

1−γ2

3 2 +1 3P 1
2

3S 1
2

- -

3 1 -2 3P 3
2

3D 3
2

√
1 − γ2

5+2
√

4−γ2

3 1 +2 3D 3
2

3P 3
2

- -

3 0 -3 3D 5
2

√
1 − 1

9 γ
2
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where the characteristic length scale is just the non-relativistic Bohr radius
divided by Z. The wave functions are written as

f(ρ) = exp

[
− ρ

]
ρs F (ρ)

g(ρ) = exp

[
− ρ

]
ρs G(ρ) (1740)

Since nr = 0, the recursion relations terminate immediately leading to the
functions F (ρ) and G(ρ) being given, respectively by constants a0 and b0. Since
κ = − 1 for the ground state, the recursion relations are simply

γ a0 + ( s + 1 ) b0 = 0

γ b0 − ( s − 1 ) a0 = 0 (1741)

The solution of the equations results in the index s being given by

s =
√

1 − γ2 (1742)

and
b0
a0

=
s + κ

γ
=

√
1 − γ2 − 1

γ
(1743)

This shows that the lower component is smaller than the upper constant by
approximately γ, which has the magnitude of v

c
where v is the velocity in Bohr’s

theory. The ratio of b0 to a0 determines the radial functions as

f(r)

r
= a0 ρ

s−1 exp

[
− ρ

]

g(r)

r
= a0

√
1 − γ2 − 1

γ
ρs−1 exp

[
− ρ

]
(1744)

Since Y 0
0 (θ, ϕ) = 1√

4 π
, the angular spherical harmonics for the upper com-

ponents are just

ΩA(θ, ϕ) =
1√
4 π

χσ (1745)

and the lower components are given by

ΩB(θ, ϕ) = − r . σ

r

1√
4 π

χσ

= − 1√
4 π

(
cos θ sin θ exp[−iϕ]

sin θ exp[+iϕ] − cos θ

)
χσ (1746)

Thus, apart from an over all normalization factor, the four-component spinor
Dirac wave function ψ is given by

ψ =
N√
4 π

ρ
√

1−γ2−1 exp

[
− ρ

] 


χσ

− i

(
r . σ

r

)
χσ


 (1747)
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Figure 50: The large f(r) and small component g(r) radial wave functions for
the 1S 1

2
ground state of Hydrogen.

Hence, it is seen that as ρ approaches the origin, at first the wave function is
slowly varying since

ρ
√

1−γ2−1 ∼ exp

[
− γ2

2
ln ρ

]
∼ 1 − γ2

2
ln ρ (1748)

but for distances smaller than the characteristic length scale

rc =
h̄

m c γ
exp

[
− 2

γ2

]
(1749)

the wave function exhibits a slight singularity. This length scale is much smaller
that the nuclear radius so, due to the spatial distribution of the nuclear charge,
the singularity is largely irrelevant. This singularity is not present in the non-
relativistic limit, since in this limit one assumes that the inequality | V (r) | ≪
m c2 always holds, although this assumption is invalid for r ∼ 0. Therefore, one
concludes that the relativistic theory differs from the non-relativistic theory at
small distances, which could have been discerned from the use of the Heisenberg
uncertainty principle.
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Figure 51: The radial wave functions for the 2S 1
2

and 2P 1
2

states of Hydrogen.

12.10.2 Lowest-Order Radial Wavefunctions

The first few radial functions for the hydrogen atom can be expressed in the
form

f(r) = N
√

1 +

(
E

m c2

) (
r

a

)s
exp

[
− r

a

] [
c0 − 2 c1

(
r

a

) ]

g(r) = − N
√

1 −
(

E

m c2

) (
r

a

)s
exp

[
− r

a

] [
d0 − 2 d1

(
r

a

) ]

(1750)

where the above form is restricted to the case where the radial quantum number
nr take on the values of 0 or 1. The index s is the same as that which occurs
in the Frobenius method and is given by the positive solution

s =
√

κ2 − γ2 (1751)

It is seen that the radial wavefunction depend on the dimensionless variable ρ
defined by

ρ =
r

a
(1752)

where the length scale a is given in terms of the energy E and the Compton
wavelength by

a =

[
1 −

(
E

m c2

)2 ]− 1
2
(

h̄

m c

)
(1753)

The values of the indices s, energy E, length scale a and normalization N
are given in Table(13). Since the two-component spinor spherical harmonics
Ωlj,jz (θ, ϕ) are normalized to unity, the normalization condition is determined
from the integral

N 2

∫ ∞

0

dr

(
| f |2 + | g |2

)
= 1 (1754)
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involving the radial wave functions. The integral is evaluated with the aid of
the identity

∫ ∞

0

dρ ρa+b exp

[
− 2 ρ

]
= 2−(a+b+1) Γ(a+ b+ 1) (1755)

The coefficients cn and dn in the above expansion of the radial functions differ

Table 13: Parameters specifying the Radial Functions for the Hydrogen atom.

State s

(
E

m c2

)
a

(
γ m c
h̄

)
N

κ = −1
√

1 − γ2
√

1 − γ2 1 1√
a

2s+ 1
2√

2Γ(2s+1)

1S 1
2

κ = −1
√

1 − γ2

√
1 +

√
1 − γ2

2 2

(
E

m c2

)
1
2

√
( 2 E

m c2
−1)

( 2 E

m c2
)

1√
a

2s+ 1
2√

Γ(2s+1)

2S 3
2

κ = 1
√

1 − γ2

√
1 +

√
1 − γ2

2 2

(
E

m c2

)
1
2

√
( 2 E

m c2
+1)

( 2 E

m c2
)

1√
a

2s+ 1
2√

Γ(2s+1)

2P 1
2

κ = −2
√

4 − γ2

√
1 − γ2

4 2 1√
a

2s+ 1
2√

2Γ(2s+1)

2P 3
2

from the coefficients an and bn that occur in the Frobenius expansion, since the
values of the ratio cnr

/dnr
has been chosen to simplify in the limit of large n. In

particular at the value of nr (at which the series terminates), the ratio is chosen
to satisfy

cnr

dnr

= 1 (1756)

instead of the condition

anr

bnr

= −
√

1 + ( E
m c2

)

1 − ( E
m c2

)
(1757)
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The relative negative sign and the square root factors in the coefficients have
been absorbed into the expressions for the upper and lower components f(r) and
g(r). The square root factors are responsible for converting the upper and lower
components, respectively, into the large and small components for positive E,
and vice versa for negative E. The expansion coefficients are given in Table(14).
Since the ratio of the magnitudes of the polynomial factors is generally of the

Table 14: Coefficients for the Polynomial in the Hydrogen atom Radial Wave-
functions.

State c0 c1 d0 d1

κ = −1 1 0 1 0
1S 1

2

κ = −1 2

(
E

m c2

) [
( 2 E

m c2
)+1

2 s + 1

]
2

[ (
E

m c2

)
+ 1

] [
( 2 E

m c2
)+1

2 s + 1

]

2S 3
2

κ = 1 2

[ (
E

m c2

)
− 1

] [
( 2 E

m c2
)−1

2 s + 1

]
2

(
E

m c2

) [
( 2 E

m c2
)−1

2 s + 1

]

2P 1
2

κ = −2 1 0 1 0
2P 3

2

order of unity, the ratio of the magnitudes of the small to large components is
found to be of the order of γ.

12.10.3 The Relativistic Corrections for Hydrogen

The Dirac equation for Hydrogen will be examined in the non-relativistic limit,
and the lowest-order relativistic corrections will be retained. The resulting equa-
tion will be recast in the form of a Schrödinger equation, in which the Hamil-
tonian contains additional interaction terms. The resulting interactions, when
treated by first-order perturbation theory, yield the fine structure. The physical
interpretation of the interactions will be examined. Historically, the following
type of analysis and the ensuing discussion of the Thomas precession played a
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decisive role in compelling Pauli to reluctantly accept Dirac’s theory.

The Dirac equation can be expressed as the set of coupled equations

(
i h̄

∂

∂t
− V − m c2

)
φA = − i h̄ c ( σ . ∇ ) φB

(
i h̄

∂

∂t
− V + m c2

)
φB = − i h̄ c ( σ . ∇ ) φA (1758)

where φA and φB are, respectively, the upper and lower two component spinors
of the four-component Dirac spinor ψ. The energy eigenvalues of these equations
are sought, so to this end the explicit time-dependence of the energy eigenstates
will be separated out via

ψ =

(
φA

φB

)
exp

[
− i

h̄
E t

]
(1759)

Also the non-relativistic energy ǫ will be defined as the energy referenced with
respect to the rest-mass energy

E = m c2 + ǫ (1760)

The coupled equations reduce to

(
ǫ − V

)
φA = − i h̄ c ( σ . ∇ ) φB

(
ǫ − V + 2 m c2

)
φB = − i h̄ c ( σ . ∇ ) φA (1761)

The pair of equations will be expanded in powers of ( p
m c

)2 and only the first-
order relativistic corrections will be retained. One can express φB as

φB =
− i h̄ c ( σ . ∇ ) φA

ǫ − V + 2 m c2

=
1

2 m c

[
1 +

ǫ − V

2 m c2

]−1

( σ . p̂ ) φA

≈ 1

2 m c

(
1 − ǫ − V

2 m c2
+ . . .

)
( σ . p̂ ) φA (1762)

to the required order of approximation. The above equation can be used to
obtain a Schrödinger-like equation for the two-component spinor φA. Since a
Schrödinger equation is sought for ψS , a correspondence must be established
between the pair of spinors (φA,φB) and ψS . The probability density is the
physical quantity which is directly associated with both types of wave functions.
The probability density associated with the Schrödinger equation should be
equivalent to the probability density associated with the Dirac equation. The
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probability density associated with the four-component Dirac spinor depends
on both φA and φB ,

P (r) =

(
φA† φA + φB† φB

)
(1763)

The probability density associated with the two-component Schrödinger wave
function depends on ψS

P (r) = ψ†
S ψS (1764)

The probability density is normalized to unity. On equating the two expressions
for the normalization and substituting for φB , one obtains

∫
d3r ψ†

S ψS =

∫
d3r

(
φA† φA +

1

4 m2 c2
( σ . p̂ φA )† ( σ . p̂ φA )

)

=

∫
d3r

(
φA† φA +

1

4 m2 c2
φA† ( σ . p̂ ) ( σ . p̂ ) φA

)

=

∫
d3r φA†

(
I +

p̂2

4 m2 c2

)
φA (1765)

Therefore, the two-component Schrödinger wave function can be identified as

ψS =

(
I +

p̂2

8 m2 c2
+ . . .

)
φA (1766)

or, on inverting the expansion

φA ≈
(
I − p̂2

8 m2 c2
+ . . .

)
ψS (1767)

Expressing φA in terms of ψS in the equation for φB yields the equation

φB ≈ 1

2 m c

(
1 − ǫ − V

2 m c2

)
( σ . p̂ )

(
I − p̂2

8 m2 c2

)
ψS

≈ 1

2 m c

[
( σ . p̂ )

(
I − p̂2

8 m2 c2

)
−
(
ǫ − V

2 m c2

)
( σ . p̂ )

]
ψS

(1768)

On substituting φB and ψS into the equation for φA, one finds the (two-
component) energy eigenvalue equation

(
ǫ − V

) (
I − p̂2

8 m2 c2

)
ψS

=
( σ . p̂ )

2 m

[
( σ . p̂ )

(
I − p̂2

8 m2 c2

)
−
(
ǫ − V

2 m c2

)
( σ . p̂ )

]
ψS

(1769)
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or
(
ǫ − V − ǫ

p̂2

8 m2 c2
+ V

p̂2

8 m2 c2

)
ψS

=

[
p̂2

2 m

(
I − p̂2

8 m2 c2

)
− ( σ . p̂ )

(
ǫ − V

4 m2 c2

)
( σ . p̂ )

]
ψS

(1770)

The above energy eigenvalue equation can be expressed as
(
ǫ − V − p̂2

2 m
+ ǫ

p̂2

8 m2 c2
+ V

p̂2

8 m2 c2

)
ψS

=

[
− p̂4

16 m3 c2
+ ( σ . p̂ )

(
V

4 m2 c2

)
( σ . p̂ )

]
ψS (1771)

The term proportional to the product of the energy eigenvalue ǫ and the kinetic
energy can be re-written as

ǫ
p̂2

8 m2 c2
ψS =

p̂2

8 m2 c2
ǫ ψS

≈ p̂2

8 m2 c2
( V +

p̂2

2 m
) ψS (1772)

to the required order of approximation. On substituting the above expression
into the energy eigenvalue equation (1771), one finds

(
ǫ − V − p̂2

2 m
+

p̂4

8 m3 c2
+ V

p̂2

8 m2 c2
+

p̂2

8 m2 c2
V

)
ψS

=

[
( σ . p̂ )

(
V

4 m2 c2

)
( σ . p̂ )

]
ψS (1773)

The above equation will be interpreted as the non-relativistic energy eigenvalue
equation for the two-component wave function ψS , which contains relativistic
corrections of order (v

c
)2. The energy eigenvalue equation (1773) will be written

in the form

ǫ ψS =

[
p̂2

2 m
+ V

]
ψS − p̂4

8 m3 c2
ψS

−
(
p̂2 V + V p̂2

8 m2 c2

)
ψS +

[
( σ . p̂ )

(
V

4 m2 c2

)
( σ . p̂ )

]
ψS

(1774)

where the relativistic corrections are symmetric in p2 and V . This represents the
energy eigenvalue equation for a two-component wave function ψS , similar to
the Schrödinger wave function, but the above equation does include relativistic
corrections to the Hamiltonian. The first correction term is

ĤKin = − p̂4

8 m3 c2
(1775)
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which is recognized as the relativistic kinematic energy correction, that origi-
nates from the expansion of the kinetic energy

ǫ =
√

m2 c2 + p2 c2 − m c2

≈ p2

2 m
− p4

8 m3 c2
+ . . . (1776)

The remaining two correction terms

[
( σ . p̂ )

(
V

4 m2 c2

)
( σ . p̂ )

]
−
(
p̂2 V + V p̂2

8 m2 c2

)
(1777)

will be interpreted as the sum of the spin-orbit interaction and the Darwin term.
It should be noted that the sum of these two terms would identically cancel in
a purely classical theory. This cancellation can be shown to occur since, in the
classical limit, V and p commute, and then the Pauli-identity can be used to
show that the resulting pairs of terms cancel.

The factor

2 ( σ . p̂ ) V ( σ . p̂ ) −
(
p̂2 V + V p̂2

)
(1778)

can be evaluated as

2 p̂ . V p̂ −
(
p̂2 V + V p̂2

)
+ 2 i σ .

(
p̂ ∧ V p̂

)
(1779)

The first two terms can be combined to form a double commutator, yielding

− [ p̂ , [ p̂ , V ] ] + 2 i σ .

(
p̂ ∧ V p̂

)
(1780)

or

+ h̄2 ∇2 V + 2 i σ .

(
p̂ ∧ V p̂

)
(1781)

The last term can be evaluated, resulting in the expression

+ h̄2 ∇2 V + 2 h̄ σ .

(
∇ V ∧ p̂

)
(1782)

since
p̂ ∧ p̂ ≡ 0 (1783)

Using these substitutions, the remaining interactions can be expressed as the
sum of the spin-orbit interaction and the Darwin interaction

ĤSO + ĤDarwin = +
h̄

4 m2 c2
σ .

(
∇ V ∧ p̂

)
+

h̄2

8 m2 c2
∇2 V (1784)
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The first term is the spin-orbit interaction term, and the second term is the
Darwin term. For central potentials, the Darwin term is only important for
electrons with l = 0. The evaluation and the physical interpretation of the
energy shifts due to the three fine-structure interactions will be discussed sepa-
rately.

12.10.4 The Kinematic Correction

The kinematic interaction

ĤKin = − p̂4

8 m3 c2
(1785)

originates from the expansion of the relativistic expression for the kinetic energy
of a classical particle

ǫ =
√

m2 c2 + p2 c2 − m c2

≈ p2

2 m
− p4

8 m3 c2
+ . . . (1786)

The first-order energy shift due to the kinematic correction ĤKin can be eval-
uated by using the solution to the non-relativistic Schrödinger equation

p̂2

2 m
ψS =

[
− m c2

2 n2

(
Z e2

h̄ c

)2

+
Z e2

r

]
ψS (1787)

which leads to

∆EKin = −
∫

d3r ψ†
S(r)

p̂4

8 m3 c2
ψS(r)

= − 1

2 m c2

∫
d3r ψ†

S(r)

[
− m c2

2 n2

(
Z e2

h̄ c

)2

+
Z e2

r

]2
ψS(r)

= m c2
(
Z e2

h̄ c

)4
3

8 n4
− Z2 e4

2 m c2

∫
d3r ψ†

S(r)
1

r2
ψS(r) (1788)

Hence, the first-order energy shift due to the kinematic correction is evaluated
as

∆EKin = m c2
(
Z e2

h̄ c

)4 [
3

8 n4
− 1

n3 ( 2 l + 1 )

]
(1789)

This term is found to lift the degeneracy between states with fixed principle
quantum numbers n and values of the angular momenta l. The relativistic kine-
matic correction to the energy is found to be smaller than the non-relativistic
energy by a factor of (

Z e2

h̄ c

)2

∼ Z2 × 10−4 (1790)
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which can be identified with a factor of (v
c
)2 as can be inferred from an analysis

based on the Bohr model of the atom. One sees that the relativistic corrections
become more important for atoms with larger Z, since the correction varies as
Z4. This occurs because for larger Z the electrons are drawn closer to the nu-
cleus and, hence have higher kinetic energies, so the electron’s velocities draw
closer to the velocity of light.

12.10.5 Spin-Orbit Coupling

To elucidate the meaning of the spin-orbit interaction, the interaction will be
re-derived starting from quasi-classical considerations of the anomalous Zeeman
interaction of a spin with a magnetic field.

Consider a particle moving with a velocity v in a static electric field E. In
the particle’s rest frame, it will experience a magnetic field B′ which is given by

B′ = − 1

c

v ∧ E√
1 − v

c
2

≈ 1

c
E ∧ v (1791)

for small velocities v. The magnetic field B′ is a relativistic correction due to
the motion of the source of the electric field. If an electron is moving in a central
electrostatic potential φ(r) caused by a charged nucleus, the radial electric field
is given by

E = − r

r

(
∂φ

∂r

)
(1792)

Hence, the magnetic field experienced by an electron in its rest frame is given
by

B′ = − 1

m c r

(
∂φ

∂r

)
r ∧ p

= − 1

m c r

(
∂φ

∂r

)
L (1793)

which is caused by the apparent rotation of the charged nucleus. In the electron’s
rest frame, the electron’s spin S should interact with the magnetic field through
the Zeeman interaction

Ĥrest
Int = − q

2 m c
gS B

′ . S (1794)

where gS is the gyromagnetic ratio for the electron’s spin. Dirac’s theory pre-
dicts that the spin is a relativistic phenomenon and also that gS = 2 for an
electron in its rest frame. This interaction with the magnetic field will cause
the spin of the electron to precess. The spin precession rate found in the elec-
trons rest frame is calculated as

ωrest =
e

2 m c
gS B

′ (1795)
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However, the electron is bound to the nucleus and is orbiting with angular
momentum L. Therefore, one has to consider the corrections to the precession
rate (and the interaction) caused by the acceleration of the electron’s rest frame.

Thomas Precession

Electrons exhibit two different gyromagnetic ratios. The gyromagnetic ratio
of gS = 2 couples a spin to an external magnetic field and there is a gyro-
magnetic ratio of unity for the lab frame. This gyromagnetic ratio of unity (in
the lab frame) enters the coupling between the spin of an electron in a circular
orbit to the magnetic field B′ experienced in the electron’s rest frame113. We
shall find the gyromagnetic ratio in the lab frame, by calculating the rate of
precession that is observed in the lab frame and then inferring the (lab frame)
interaction which produces the same rate of precession.

In the electron’s rest frame, the gyromagnetic ratio due to the orbital mag-
netic field B′ (caused by the charged nucleus) is given by gs = 2. This gyro-
magnetic ratio yields a spin precession rate in the electron’s rest frame of

ωrest =
e

2 m c
gS B

′ (1796)

The spin precession rate observed in the lab frame will be calculated later. The
rate of precession as observed in the electron’s rest frame has to be corrected
by taking into account the motion of the electron. The correction is due to
the non-additivity of velocities in successive Lorentz transformations. First,
the transformation properties of Dirac spinors under infinitesimal rotations and
boosts will be re-examined. Secondly, infinitesimal transformations will be suc-
cessively applied to describe the particle’s instantaneous rest frame and the
Thomas precession.

A Lorentz transform of a spinor field ψ is achieved by the rotation operator
R̂ via

ψ′(r) = R̂ ψ(R−1r) (1797)

where R̂ shuffles the components of the spinor. For a passive rotation (of the
coordinate system) through the infinitesimal angle δϕ in the i - j plane, the
infinitesimal Lorentz transform has the non-zero elements

ǫi,j = − ǫj,i = − δϕ (1798)

Hence, the four-component spinor is transformed by a rotation operator of the
form

R̂(δϕ) = exp

[
+ i

δϕ

2
σi,j

]
(1799)

113L. H. Thomas, Nature 117, 514 (1926).
L. H. Thomas, Phil. Mag. 3, 1 (1927).
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where

σi,j =
i

2
[ γ(i) , γ(j) ]

=
∑

k

ξi,j,k
(
σ(k) 0
0 σ(k)

)
(1800)

Hence, for a passive rotation through an infinitesimal angle δϕ, the four-component
Dirac spinor is rotated by

R̂(δϕ) = Î + i
δϕ

2

∑

k

ξi,j,k
(
σ(k) 0
0 σ(k)

)
+ . . . (1801)

which can be expressed in terms of the projection of the (block diagonal) spin
operator Ŝ = h̄

2 σ̂ on the axis of rotation ê as

R̂(δϕ) = Î +
i δϕ

2
( ê . σ̂ ) + . . .

= Î +
i δϕ

h̄
( ê . Ŝ ) + . . . (1802)

which is in accord with the definition of spin Ŝ as the generator of rotations.

If the primed frame of reference has a velocity v along the k-axis relative
to the un-primed frame, the infinitesimal Lorentz transform has the non-zero
elements

ǫ0,k = − ǫk,0 = − v

c
(1803)

A Lorentz boost along the k-axis corresponds to a rotation in the 0 - k plane
through an “angle” χ

R̂(χ) = exp

[
+ i

χ

2
σ0,k

]
(1804)

where the “angle” χ is governed by the boost velocity v through

tanhχ =
v

c
(1805)

However,

σ0,k =
i

2
[ γ(0) , γ(k) ] = i α(k) (1806)

so

R̂(χ) = exp

[
− χ

2
α(k)

]
(1807)

Therefore, for a Lorentz boost with an infinitesimal velocity v along the k-th
direction, one finds

R̂(χ) = Î − v

2 c
α(k) + . . . (1808)
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The infinitesimal transformation is guaranteed to be consistent with the source
free solution of the Dirac equation. For example, if the above transformation is
applied to the solution of the Dirac equation describing a positive-energy parti-
cle at rest, the transformed solution describes a particle moving with momentum
p = − m v when viewed from the moving frame of reference.

q

v

a E

ωRest
ωΤ

Figure 52: A cartoon depicting a rotating charged spin one-half particle, along
with the precession of the spin due to the external field in the particle’s rest
frame and the Thomas precession.

Consider the rotation R̂1 of a spinor due to an infinitesimal Lorentz trans-
formation with “small” velocity v, then

R̂1 = Î − 1

2 c
α . v + . . . (1809)

At a time δt later, the electron has changed its velocity since it is accelerating.
The new velocity of the electron’s rest frame is given by

v′ = v + a δt (1810)

On performing a second Lorentz transform with the boost a δt, one finds the
rotation

R̂2 = Î − 1

2 c
α . a δt + . . . (1811)

The combined Lorentz transform is given by

R̂ = R̂2 R̂1 =

(
Î − 1

2 c
α . a δt

) (
Î − 1

2 c
α . v

)
+ . . .

= Î − 1

2 c
α . ( v + a δt ) +

1

4 c2
( α . a ) ( α . v ) δt + . . .(1812)

The Pauli identity can be used to evaluate the last term

( α . a ) ( α . v ) = ( σ̂ . a ) ( σ̂ . v )

= a . v Î + i σ̂ . ( a ∧ v ) (1813)
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where, since the product of the two α’s yields a two by two block diagonal form
which involves the four by four matrices Î and σ̂. Hence, the right-hand side acts
equally on both the upper and lower two-component spinors. Furthermore, since
the orbit is circular, the acceleration is perpendicular to the velocity, therefore

a . v = 0 (1814)

Thus, the combined boost corresponds to the transformation

R̂ = Î − 1

2 c
α . ( v + a δt ) +

i

4 c2
σ̂ . ( a ∧ v ) δt + . . . (1815)

The combined boost is identified as producing an infinitesimal Lorentz boost
through v + a δt and a rotation around an axis ê through the infinitesimal
angle δϕ given by

δϕ ê ≈ 1

2 c2
( a ∧ v ) δt (1816)

The rotation part acts on both the upper and lower two-component spinors in
the Dirac spinor. The rotation angle δϕ is linearly proportional to the time
interval δt. This class of rotations due to the combination of Lorentz boosts are
known as a Wigner rotations. Hence, it was shown that the spinor rotates with
the angular velocity given by

ωT =
1

2 c2
( a ∧ v )

=
q

2 m c2
( E ∧ v ) (1817)

The magnitude of ωT is calculated as

ωT =
e

2 m c
B′ (1818)

and its direction is opposite to the precession of the spin in the electron’s rest
frame.

On combing the two precession frequencies, one finds that in the lab frame
the spin’s precession rate is given by

ωLab = ωrest − ωT

=
e

2 m c
( gS − 1 ) B′ (1819)

It is clear that the moving spin experiences an effective interaction which is
reduced by the factor (

gS − 1

gS

)
(1820)

when compared to the interaction in the electron’s rest frame. Hence, the gyro-
magnetic ratio that enters the spin-orbit coupling should not be gS but should
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be given by ( gS − 1 ).

The Spin-Orbit Interaction

In the lab frame, the interaction between the moving electron’s spin S mag-
netic moment and its field is inferred to be

ĤLab
Int = − q

2 m c
( gS − 1 ) B′ . S (1821)

where gS is the gyromagnetic ratio. Since the magnetic induction field is given
by

B′ = − 1

m c r

(
∂φ

∂r

)
L (1822)

where the electrostatic potential is given by

φ(r) =
q′

r
(1823)

the spin-orbit interaction can be expressed as

ĤSO = − q

2 m c
( gS − 1 )

q′

m c r3
L . S (1824)

Hence, the spin-orbit interaction is found to be given by

ĤSO =
Z e2

2 m2 c2 r3
( gS − 1 ) L . S (1825)

The spin-orbit coupling is a relativistic coupling which, apart from the Thomas
precession factor, indicates that the electron’s spin interacts with a magnetic
field in its rest frame via the gyromagnetic ratio of 2. The magnitude of the
interaction agrees precisely with the interaction found from the perturbative
treatment of the Dirac equation.

To first-order in perturbation theory, the spin-orbit coupling interaction
yields a shift of the energy levels. Since the total angular momentum J is a
good quantum number, one can write

L . S =
1

2

(
j ( j + 1 ) − l ( l + 1 ) − 3

4

)
(1826)

but j for a single electron can only take on the values j = l ± 1
2 , so

L . S =
1

2

(
± ( l +

1

2
) − 1

2

)
(1827)

The expectation value of r−3 is evaluated as

∫
d3r ψ†

S(r)
1

r3
ψS(r) =

1

l ( l + 1
2 ) ( l + 1 )

(
Z

n a

)3

(1828)
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for l 6= 0. So the first-order energy-shift due to the spin-orbit coupling can be
expressed as

∆ESO = m c2
(
Z e2

h̄ c

)4 [ ± ( l + 1
2 ) − 1

2

4 n3 l ( l + 1
2 ) ( l + 1 )

]
(1829)

Therefore, the spin-orbit interaction lifts the degeneracy between states with
different j = l ± 1

2 values. For l = 0, the numerator vanishes since the total
angular momentum can only take the value

j = +
1

2
(1830)

The energy shift produced by the spin-orbit coupling is about a factor of the
square of the fine structure constant

(
e2

h̄ c

)2

∼
(

1

137

)2

∼ 10−4 (1831)

smaller than the energy levels of the hydrogen-like atom

En ≈ − m c2

2 n2

(
Z e2

h̄ c

)2

(1832)

calculated using the non-relativistic Schrödinger equation. The spin-orbit split
levels are labeled by the angular momentum values and the j values, and are
denoted by nLj . Hence, for n = 2 and l = 1, one has the two levels 2P 1

2
and

2P 3
2
, while for n = 3 and l = 2 one has the levels 3D 3

2
and 3D 5

2
, and so on. It

is seen that the spin-orbit interaction is increasingly important for atoms with
large Z values, as it varies like Z4.

12.10.6 The Darwin Term

The Darwin term has no obvious classical interpretation. It only has physical
consequences for states with zero orbital angular momentum. However, it does
play an important role for the s electronic state of hydrogen, and is essential in
describing why the Dirac’s theory makes the 2S 1

2
and 2P 1

2
states of hydrogen

degenerate. This degeneracy was an essential ingredient in the discovery of the
Lamb shift and the subsequent development of Quantum Electrodynamics.

The Darwin interaction is given by

ĤDarwin =
π Z e2 h̄2

2 m2 c2
δ3(r) (1833)

which produces the first-order shift

∆EDarwin =
π Z e2 h̄2

2 m2 c2
ψ†
S(0) ψS(0) (1834)
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Hence, the shift only occurs for electrons with l = 0. Furthermore, since the
probability density for finding the electron at the origin is given by

ψ†
S(0) ψS(0) =

1

π

(
Z

n a

)3

δl,0 (1835)

to first order, the Darwin term produces a shift

∆EDarwin =
m c2 Z4

2 n3

(
e2

h̄ c

)4

δl,0 (1836)

which shifts the energies of s states upwards. The Darwin term reflects the fact
that the relativistic corrections are important for small r since the inequality

m c2 ≫ Z e2

r
(1837)

required for the non-relativistic treatment to be reasonable is violated in this
region.

12.10.7 The Fine Structure of Hydrogen

Kinematic

PE

Kinematic

Darwin

S

Spin Orbit

n = 2

2S1/2 2P1/2

2P3/2

Figure 53: The Grotarian energy level diagram for the n = 2 shell of hydrogen
(blue). The diagram shows the magnitude and sign of the various relativistic
corrections. It should be noted that states with the same j are degenerate.

When the various relativistic corrections are combined, for l = 0, the Darwin
term exactly compensates for the absence of the spin-orbit interaction. There-
fore, the energy shifts combine to yield one formula in which l drops out. This
implies that the energy levels only depend on the principle quantum number n
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and the total angular momentum j. States with different orbital angular mo-
menta are degenerate, even though the individual interactions appear to raise
the degeneracy. The relativistic corrections inherent in Dirac’s theory of hydro-
gen yields energy shifts and line-splittings which are described as fine structure.
The energy levels are described by

E ≈ m c2
[

1 − 1

2

Z2α2

n2
− 1

2

Z4 α4

n3

(
1

( j + 1
2 )

− 3

4 n

)
+ . . .

]

(1838)

where

α =

(
e2

h̄ c

)
(1839)

is the fine structure constant. Generally, states with larger j values have higher
energies. The fine structure splittings decrease with increasing n like n−3, but
increase with increasing Z like Z4. The splitting of the lower energy levels are
largest, for example

E2P 3
2

− E2P 1
2

= − m c2 α4

16

(
1

2
− 1

1

)
≈ 4.533 × 10−5 eV (1840)

This splitting corresponds to a frequency of 10.96 GHz. The energy levels are
predicted to be doubly degenerate (in addition to the degeneracy associated
with j3), the degeneracy is just the number of states with different l values that
yield the same value of j. Since j is found by combining l with the electronic
spin s = 1

2 , there are two possible l values for each energy level which are given
by the solutions of either

j = l +
1

2
(1841)

or

j = l − 1

2
(1842)

The higher-order relativistic corrections do not alter the conclusion that the
states labeled by (n, j) are degenerate, as the energy levels found from the exact
solution of the Dirac equation only depend on n and j. For j = 1

2 the energy
levels, although predicted to be degenerate by Dirac’s theory, are experimentally
observed as being non-degenerate. The first experiments that revealed this split-
ting were performed by Lamb and Retherford114. These scientists found that
the 2S 1

2
was shifted by about 1057 MHz to higher energies relative to the 2P 1

2
.

The relative shift of the nS 1
2

level of hydrogen with respect to the nP 1
2

level is
known as the Lamb shift.

Lamb and Retherford’s Experiment

114W. E. Lamb Jr. and R. E. Retherford, Phys. Rev. 72, 241 (1947).
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Figure 54: The Grotarian energy level diagram for the n = 3 shell of hydrogen
(blue). The diagram shows the magnitude and sign of the various relativistic
corrections. It should be noted that states with the same j are degenerate.

Lamb and Retherford designed an experiment to accurately measure the fine
structure of the hydrogen atom. In the experiment, the time scales were such
that the population of all excited states, other than the meta-stable 2S 1

2
state

of hydrogen, radiatively decayed to the ground state. Hence, the number of
induced transitions from the 2S 1

2
state could be monitored by simply observing

of the population of hydrogen atoms not in the ground state.

e-

e-

H1
H1

Oven    EM 
Cavity

I

Figure 55: A schematic of the apparatus used in the Lamb-Retherford exper-
iment. The beam of H molecules is produced in an oven, the beam is excited
by cross-bombardment with an electron beam. The population of the 2S 1

2
is al-

tered in the microwave resonator, and the population is observed via the current
emitted at the tungsten plate.

A beam of hydrogen atoms was produced by dissociating hydrogen molecules
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in an oven. The thermal beam of hydrogen atoms was then cross-bombarded
with electrons, which excited some of the hydrogen atoms out of the ground
state. Since the electron-atom scattering doesn’t obey the radiation selection
rules, a finite population of atoms (about 1 in 108) were excited to the long-lived
2S 1

2
state. Subsequently, the other excited electronic states rapidly decayed to

the ground state by the emission of radiation. The beam of hydrogen atoms was
then passed through a tuneable (microwave) electromagnetic resonator, which
could cause the hydrogen atoms in the meta-stable level to make transitions
to selected nearby energy levels. Again, any non-2S excited state of hydrogen
produced by the action of the resonator rapidly decayed to the ground state.
The resulting beam of hydrogen atoms was incident on a Tungsten plate, and
the collision could result in electron emission if the atoms were in an excited
state, but no emission would take place if the hydrogen atom was in the ground
state. Therefore, the current due to the emitted electrons was proportional to
the number of meta-stable hydrogen atoms that survived the passage through
the resonator. Hence, analysis of the experiment yielded the number of transi-
tions undergone in the electromagnetic resonator.

Figure 56: The dependence of the current emitted from the tungsten plate on
the applied magnetic field. The resonance frequency was set to 9487 Megacycles.
[W. E. Lamb Jr. and R. C. Retherford, Phys. Rev. 72, 241 (1947).]

In the resonator, an applied magnetic field Zeeman split the excited levels of
hydrogen and, when the oscillating field was on-resonance with the splitting of
the energy levels, the hydrogen atom made transitions out from the meta-stable
2S 1

2
state. At resonance, the frequency of the oscillating electromagnetic field

is equal to the energy splitting. Therefore, for fixed frequency, knowledge of the
resonance magnetic field allowed the splitting of the energy levels to be accu-
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rately determined. The field dependence of the resonance frequency indicated

Figure 57: The observed dependence of the resonance frequencies on the applied
magnetic field. The solid lines are the predictions of the Dirac theory and the
dashed lines are the result of Dirac’s theory if the energy of the 2S state is
simply shifted. [W. E. Lamb Jr. and R. C. Retherford, Phys. Rev. 72, 241
(1947).]

that at zero field the degeneracy between the 2S 1
2

and 2P 1
2

states were lifted,
with the 2S 1

2
state having the higher energy.

12.10.8 A Particle in a Spherical Square Well

The radial equation for a relativistic spin one-half particle in a spherically sym-
metric “square well” potential is given by

( E − V (r) − m c2 ) f(r) + c h̄

(
∂

∂r
− κ

r

)
g(r) = 0

( E − V (r) + m c2 ) g(r) − c h̄

(
∂

∂r
+

κ

r

)
f(r) = 0

(1843)
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We shall examine the case of an attractive central square well potential V (r)
which is defined by

V (r) =

{
− V0 for r < a
0 for r > a

(1844)

In the region r < a where the potential is finite, the Dirac radial equation
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r/a

V
(r
)/
V
0

Figure 58: A spherically symmetric potential well, of depth V0 and radius a.

becomes

( E + V0 − m c2 ) f(r) + c h̄

(
∂

∂r
− κ

r

)
g(r) = 0

( E + V0 + m c2 ) g(r) − c h̄

(
∂

∂r
+

κ

r

)
f(r) = 0

(1845)

The function f(r) satisfies a second-order differential equation, which can be
found by pre-multiplying the second equation by the operator

c h̄

(
∂

∂r
− κ

r

)
(1846)

and then eliminating g(r) by using the first equation. This process yields the
equation

c2 h̄2

(
∂2

∂r2
− κ ( κ + 1 )

r2

)
f(r) = −

(
( E + V0 )2 − m2 c4

)
f(r)

(1847)
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By using a similar procedure, starting from the second equation, one can find
the analogous equation for g(r)

c2 h̄2

(
∂2

∂r2
− κ ( κ − 1 )

r2

)
g(r) = −

(
( E + V0 )2 − m2 c4

)
g(r)

(1848)

It should be recognized that the term proportional to κ ( κ + 1 ) on the left-
hand side of the eqn(1847) for the large component, when divided by 2 m c2,
is equivalent to the centrifugal potential in the non-relativistic limit. The small
component experiences a different centrifugal potential. Furthermore, the quan-
tity

( E + V0 )2 − m2 c4 (1849)

plays a similar role to the kinetic energy in the non-relativistic Schrödinger
equation.

Real Momenta

If the quantity ( E + V0 )2 − m2 c4 is positive, it can be written as

( E + V0 )2 − m2 c4 = c2 h̄2 k2
0 > 0 (1850)

where k0 is real. These equations can be expressed in dimensionless form by
introducing the dimensionless variable variable ρ = k0 r. The radial equations
simplify to become

ρ2 ∂2f

∂ρ2
+

(
ρ2 − κ ( κ + 1 )

)
f = 0

ρ2 ∂2g

∂ρ2
+

(
ρ2 − κ ( κ − 1 )

)
g = 0 (1851)

Since (apart from the sign) κ is identified with a form of angular momentum,
one sees that the upper and lower components experience different centrifugal
potentials. These equations have forms which are closely related to Bessel’s
equation. If one sets

f = ρ
1
2 X|κ+ 1

2 | (1852)

and
g = ρ

1
2 Y|κ− 1

2 | (1853)

the equations reduce to the pair of Bessel’s equations

ρ2
∂2X|κ+ 1

2 |

∂ρ2
+ ρ

∂X|κ+ 1
2 |

∂ρ
+

(
ρ2 − ( κ +

1

2
)2
)
X|κ+ 1

2 | = 0

ρ2
∂2Y|κ− 1

2 |

∂ρ2
+ ρ

∂Y|κ− 1
2 |

∂ρ
+

(
ρ2 − ( κ − 1

2
)2
)
Y|κ− 1

2 | = 0

(1854)
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of half-integer order. The spherical Bessel functions and spherical Neumann
functions of order n are defined in terms of the Bessel functions via

jn(ρ) =

√
π

2 ρ
Jn+ 1

2
(ρ)

ηn(ρ) =

√
π

2 ρ
Nn+ 1

2
(ρ) (1855)

Therefore, the general solutions of each of the radial equations can be expressed
as

f(r)

r
= A0 j|κ+ 1

2 |− 1
2
(k0r) + A1 η|κ+ 1

2 |− 1
2
(k0r) (1856)

and
g(r)

r
= B0 j|κ− 1

2 |− 1
2
(k0r) + B1 η|κ− 1

2 |− 1
2
(k0r) (1857)

However, since the functions f(r) and g(r) in the upper and lower components
are related by the differential equations

(
∂

∂ρ
+

1 + κ

ρ

) (
f(r)

r

)
=

( E + V0 + m c2 )

c h̄ k0

(
g(r)

r

)
(1858)

and
(

∂

∂ρ
+

1 − κ

ρ

) (
g(r)

r

)
= − ( E + V0 − m c2 )

c h̄ k0

(
f(r)

r

)
(1859)

the two sets of coefficients (A0, A1) and (B0, B1) must also be related. The
explicit relations can be found by using the recurrence relations for the spherical
Bessel functions jn(ρ)

∂

∂ρ

(
ρn+1 jn(ρ)

)
= ρn+1 jn−1(ρ) (1860)

and
∂

∂ρ

(
ρ−n jn(ρ)

)
= − ρ−n jn+1(ρ) (1861)

The spherical Neumann functions ηn(ρ) satisfy identical recurrence relations.
This yields the relations

A0 = sign

(
κ

) (
E + V0 + m c2

c h̄ k0

)
B0

A1 = sign

(
κ

) (
E + V0 + m c2

c h̄ k0

)
B1 (1862)

Hence, for positive-energy solutions. the upper components are the large com-
ponents and the lower components are the small components. In the inner
region, one must set A1 = B1 = 0, since the wave function are required to be
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normalizable near the origin and the spherical Neumann functions ηn(ρ) diverge
as ρ−(n+1) as ρ→ 0.

Imaginary Momenta

If the quantity ( E + V0 )2 − m2 c4 is negative, it can be written as

( E + V0 )2 − m2 c4 = − c2 h̄2 κ2
0 < 0 (1863)

where κ0 is real. This corresponds to the case of negative kinetic energies. In
this case, one can express the solution in terms of the modified spherical Bessel
functions

f(r)

r
= A′

0 i|κ+ 1
2 |(κ0r) + A′

1 k|κ+ 1
2 |(κ0r) (1864)

and
g(r)

r
= B′

0 i|κ− 1
2 |(κ0r) + B′

1 k|κ− 1
2 |(κ0r) (1865)

Because to the factors of i in the definitions of the modified spherical Bessel
functions, the amplitudes of the upper and lower components are related via

A′
0 = −

(
E + V0 + m c2

c h̄ κ0

)
B′

0

A′
1 =

(
E + V0 + m c2

c h̄ κ0

)
B′

1 (1866)

where a minus sign has appeared in the first equation. Again, we see that for
positive energies, for r < a, the upper components are the larger components
and the lower components are the smaller components.

Bound States

The bound state energy E must occur in the energy interval

m c2 > E > − m c2 (1867)

so that the wave function in the region r < a where the potential is zero is
exponentially decaying. Since E2 − m2 c4 < 0, the wave functions in the
outer region should also be expressed in terms of the modified spherical Bessel
functions. The quantity κ1 can be defined as

E2 − m2 c4 = − h̄2 c2 κ2
1 (1868)

and the equations can be expressed in terms of the dimensionless variable

ρ = i κ1 r (1869)

In this case, it is more useful to express the solution of the radial Dirac equation
in terms of the spherical Hankel functions h±n (ρ). The spherical Hankel functions
are defined via

h±n (ρ) = jn(ρ) ± i ηn(ρ) (1870)
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For asymptotically large ρ, these functions are complex conjugates and represent
out-going or incoming spherical waves

lim
ρ→∞

h±n (ρ) → 1

ρ
exp

[
± i

(
ρ − ( n +

1

2
)
π

2

) ]
(1871)

The factor of ρ−1 reflects the fact that the intensity of an outgoing wave-packet
decreases in proportion to ρ−2 in order to conserve energy and probability. From
the asymptotic variation, it is seen that the spherical Hankel functions h±n (iρ)
with imaginary arguments, respectively, represent exponentially attenuating or
growing spherical waves. In the exterior region, the solutions are represented
by

f(r)

r
= C ′

0 h
+
|κ+ 1

2 |− 1
2

(iκ1r) + C ′
1 h

−
|κ+ 1

2 |− 1
2

(iκ1r) (1872)

and
g(r)

r
= D′

0 h
+
|κ− 1

2 |− 1
2

(iκ1r) + D′
1 h

−
|κ− 1

2 |− 1
2

(iκ1r) (1873)

The coefficients of the upper and lower components are related via

C ′
0 = −

(
E + m c2

c h̄ κ1

)
D′

0

C ′
1 =

(
E + m c2

c h̄ κ1

)
D′

1 (1874)

as can be seen by substituting the asymptotic form of the Hankel functions given
by eqn(1871) in the asymptotic form of the differential equations relating f(r)
and g(r) with V0 = 0. If this wave function is to be normalizable at ρ → ∞,
one must set C ′

1 = D′
1 = 0.

The solutions for the wave functions have been found in the inner and outer
regions of the potential. The solution must also hold at r = a. This is achieved
by demanding that the upper and lower components of the wave function are
continuous at r = a. These conditions are demanded due to charge conservation
∂µ j

µ = 0, since the current jµ only depends on the components of ψ and does
not (explicitly) depend on their derivatives.

Since the wave function at the origin must be normalizable, and since the
wave function must be exponentially decaying, when r → ∞, the matching
condition for the upper component becomes

A0 j|κ+ 1
2 |− 1

2
(k0a) = C ′

0 h
+
|κ+ 1

2 |− 1
2

(iκ1a) (1875)

and the matching condition for the lower components becomes

B0 j|κ− 1
2 |− 1

2
(k0a) = D′

0 h
+
|κ− 1

2 |− 1
2

(iκ1a) (1876)
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By eliminating the amplitudes from the two matching conditions by using
eqn(1874), one can arrive at the equation

sign(κ)

(
E + V0 + m c2

c h̄ k0

) (
j|κ+ 1

2 |− 1
2
(k0a)

j|κ− 1
2 |− 1

2
(k0a)

)
= −

(
E + m c2

c h̄ κ1

) (h+
|κ+ 1

2 |− 1
2

(iκ1a)

h+
|κ− 1

2 |− 1
2

(iκ1a)

)

(1877)
In the above expression, the quantities k0 and κ1 are defined by

h̄2 c2 k2
0 = ( E + V0 )2 − m2 c4 (1878)

and
h̄2 c2 κ2

1 = m2 c4 − E2 (1879)

These equations determine the allowed values for the energy. The above set of
equations have to be solved numerically to find the energy eigenvalues. We note
that for the Dirac particle, the spin effectively results in the formation of a cen-
trifugal barrier (either for the upper or the lower component) even for electrons
in s states. As a result, the potential V0 must exceed a critical strength if it is
to yield a bound state.

12.10.9 The MIT Bag Model

From the point of view of symmetry, a baryon, such as a neutron or proton, are
thought of as being composed of three (valence) quarks. For example, the proton
is considered to be made of two up quarks and a down quark (p = (uud)), while
the neutron is considered to be made of one up quark and two down quarks
(n = (udd)). These valence quarks are assumed to be surrounded by a sea of
gluons which bind the quarks together and a sea of virtual quark/anti-quark
pairs that are produced by the gluon field. Likewise, mesons are considered
to be made of a quark and an anti-quark, but these valence quarks are also
surrounded by a sea of gluons and quark/anti-quark pairs. The gluon force has
the property that the energy of interaction increases as the separation between
the quarks increases. It is this property of the gluon force that results in the
quarks being confined, so that no single quark can be found in nature.

The MIT bag model115 is a simple purely phenomenological model for the
structure of strongly interacting particles (hadrons). The model is based on
the spherically symmetric potential of radius a, but it will be assumed that the
quark mass can have one or the other of two values. The quark is assumed to
have a small mass (approximately zero) if it is located within a sphere of radius
a, and the mass is assumed to be very large (or infinite) if r > a. To be sure,
the quark mass is assumed to be a function of r such that

m = 0 if r < a

m → ∞ if r > a (1880)

115A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, Phys. Rev. D 9,
3471, (1974).
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It is the infinite mass of the quark for r > a that results in the confinement of
the quark to within the hadron. That is, in the exterior region, the infinite rest
mass energy exceeds the bound state energy so the exterior region is classically
forbidden, therefore, the particle is confined to the interior.

Inside the hadron, where both the potential energy and the mass m are zero,
the kinetic energy parameter k0 can be expressed entirely in terms of the energy
via E = h̄ c k0 since the potential is assumed to be zero. Therefore, the radial
components of the Dirac wave function can be expressed as

f(r)

r
= A0 j|κ+ 1

2 |− 1
2
(k0r)

g(r)

r
= sign(κ) A0 j|κ− 1

2 |− 1
2
(k0r) (1881)

where the amplitudes of the upper and lower components are the same, since
the potential and mass are zero for r < a.

Outside the hadron, where r > a, the energy E is assumed to be much less
than the rest mass energy, m c2 ≫ E, therefore, the momentum parameter is
imaginary and one can set h̄ c κ1 ≈ m c2. In the exterior region, the radial
functions can be expressed as

f(r)

r
= C ′

0 h
+
|κ+ 1

2 |− 1
2

(iκ1r)

g(r)

r
= − C ′

0 h
+
|κ− 1

2 |− 1
2

(iκ1r) (1882)

since the imaginary momentum parameter has a magnitude which is governed
by the large mass m. Due to the large magnitude of κ1, the wave function
decays very rapidly in the exterior region.

The bound state energy is determined from the matching condition

sign(κ)

(
j|κ+ 1

2 |− 1
2
(k0a)

j|κ− 1
2 |− 1

2
(k0a)

)
= −

(h+
|κ+ 1

2 |− 1
2

(iκ1a)

h+
|κ− 1

2 |− 1
2

(iκ1a)

)
(1883)

Due to the asymptotic properties of the spherical Hankel functions, their ratio
is unity for large κ1. This leads to the energies of the quarks being governed by
the simplified matching condition

j|κ+ 1
2 |− 1

2
(k0a) = − sign(κ) j|κ− 1

2 |− 1
2
(k0a) (1884)

where
E = c h̄ k0 (1885)

The above equation governs the ground state and excited state energies of the
individual quarks inside the hadron. Since the spherical Bessel functions oscil-
late in sign, the above equations will result in a set of solutions for k0 with fixed
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κ. From the structure of the equations, it is seen that the solutions k0 will only
depend on the integer number κ and the value of a. Since another boundary
condition should also be imposed at the bag’s surface, only states with angular
momentum j = 1

2 should be retained. This extra condition restricts the interest
to states with κ = − 1.

We shall examine the lowest-energy bound state which corresponds to the
case κ = − 1. The bound state energies are given by the matching condition

j0(k0a) = j1(k0a) (1886)

Since

j0(ρ) =
sin ρ

ρ
(1887)

and

j1(ρ) =

(
sin ρ − ρ cos ρ

ρ2

)
(1888)

the energy eigenvalues are determined by the solutions of

ρ =
1

1 + cot ρ
(1889)

which has an infinite number of solutions which, asymptotically, are spaced by
π. The smallest solution corresponds to k0 a = 2.04. Hence, the energy of the

0

0.5

1

0 1 2 3 4ρ

P
( ρ)/
P
(0
)

Figure 59: The radial dependence of the quark-distribution in the ground state
of the MIT bag.

lowest-energy quark is give by the formula

Eκ=−1,nr=0 =
2.04 c h̄

a
(1890)

The solutions with larger values of k0, corresponding to excited states with
κ = − 1 are given by analogous expressions. Therefore, if one knows the value
of a, one could find the energies required to excite a single-quark between the
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Table 15: The lowest single-particle energies (in units of Eκ,nr
a/c h̄) of the MIT

Bag Model.

nr κ = −1 κ = +1 κ = −2 κ = +2

nr = 0 2.04 3.81 3.21 5.12

nr = 1 5.40 7.00 6.76 8.41

nr = 2 8.58 10.17 10.01 11.61

nr = 3 11.73 13.31 13.20 14.79

single particle levels. This could allow one to calculate the excitation energies
required to change the hadron’s internal structure.

In conclusion, the MIT bag model, when interpreted as being a strictly
single-particle picture, predicts that the set of excitation energies (for the in-
ternal structure) of each of the basic hadrons can be put into a one-to-one
correspondence with each other. That is, the family of excitation energies for
each hadron should fall on-top of each other, if one scales the energies by mul-
tiplying them with the hadron’s characteristic length scale a. The bag radius
is determined by the use of further phenomenological considerations. However,
although the model can be used to fit the right size for a nucleon (∼ 1 fm),
the model predicts that a meson (such as the pions which are composed of a
quark and anti-quark in the combinations of either (u, d), (d, u) or 1√

2
(dd−uu)

) should have almost the same radii116

an
aπ

=

(
3

2

) 1
4

(1891)

Hence, the ratio of the nucleon mass Mn to the pion mass Mπ is expected to be
given by the formula

Mn

Mπ

=
3 × 2.04/an
2 × 2.04/aπ

=
3

2

(
2

3

) 1
4

(1892)

116It is assumed that the bag energy is given by the sum of a volume term B a3 and the sum
of the quark energies c h̄

a

∑
n
αn. Minimizing the energy w.r.t a results in the bag radius a

being determined by

a4 =
c h̄

3 B

∑

n

αn
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Table 16: The Observed Energy Levels for the charmonium system (cc) in units
of MeV/c2.

1S0
3S1

3P0
3P1

3P2

2981 3097 3415 3510 3556
3686 3770 - - -

- 4040 - - -
- 4160 - - -

which yields a ratio of 1.36. This ratio is far too small for the triplet of π mesons
since Mπ ∼ 139 MeV/c2, and Mn ∼ 938 MeV/c2. Although it is in adequate
for the pseudo-scalar mesons, the MIT bag model is more appropriate for the ω
vector meson which is composed of 1√

2
(uu+ dd) and has a mass of Mω ∼ 783

MeV/c2, or the ρ vector meson 1√
2
(uu+ dd) with a mass Mρ ∼ 776 MeV/c2.

Hence, at best, the MIT Bag model produces mixed results. The MIT Bag
model is also quite unappealing, since the basic assumptions of the bag model
do not follow from Quantum Chromodynamics, and the model is neither re-
normalizable nor is it Lorentz invariant.

12.10.10 The Temple Meson Model

A quark and anti-quark pair form bound states. Thus, for example a charmed
quark/anti-quark pair (c, c) can form states with different internal quantum
numbers117. The experimentally determined energies for the J/Ψ system118

are given in Table(16). Similarly, the Upsilon particle119 (bb) has a similar set
of energy levels. The energy levels of the Upsilon system120 are tabulated in
Table(17). For positronium121, like the hydrogen atom, it is the electromagnetic
force mediated by vector photons which binds the electron and positron into a
bound state. For a quark/anti-quark bound state, it is the color force mediated
by massless vector gluons that bind the quark/anti-quark pair together. The
color force has the property that it increases with increasing separation of the
quark/anti-quark pair, which has the consequence that the quarks are confined.
Furthermore, high-energy inelastic scattering experiments on hadrons indicate

117J. E. Augustin et al. Phys. Rev. Lett. 33, 1406 (1974).
J. J. Aubert Phys. Rev. Lett. 33, 1404 (1974).
118The data are taken from the Particle Data Group: http://pdg.lbl.gov
119S. W. Herb, et al. Phys. Rev. Lett. 39, 252 (1977).

W. R. Innes et al. Phys. Rev. Lett. 39, 1240 (1977).
120The data are taken from the Particle Data Group: http://pdg.lbl.gov
121M. Deutsch, Phys. Rev. 82, 455 (1951).
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Table 17: The Observed Energy Levels for the Upsilon system (bb) in units of
MeV/c2.

1S0
3P0

3P1
3P2

9460 9860 9893 9913
10025 10232 10255 10268
10355 - - -
10580 - - -

that at small separations the quarks only interact weakly. This property is
called asymptotic freedom. It was the realization by ’t Hooft122, Gross and
Wilczek123 and Politzer124 that non-Abelian gauge theories possessed the prop-
erties of asymptotic freedom that led to the acceptance of the theory of Quantum
Chromodynamics. The screening of the color force between the quarks at large
distances (due to virtual quark/anti-quark pairs) is more than compensated by
an anti-screening due to virtual gluon pairs. However, at small distances the
color force vanishes.

The rest-mass energy of the quarks and anti-quarks will be modeled by

m(r) c = m0

(
c − i ω α . r

)
(1893)

which describes an energy similar to that of an elastic string which couples to
the spin125. The model has two undetermined parameters, the quark mass m0

and the string tension m0 c ω. The mass m(r), and the Dirac equation, can be
used to determine the energy levels of quarkonium.

Exercise:

Show that the positive energy eigenvalues of the Dirac equation with the
mass m(r) given by

m(r) c = m0

(
c − i ω α . r

)
(1894)

are determined as
En,j,l = m0 c

2
√
t A + 1 (1895)

122G. t’ Hooft, unpublished (1972).
123D. J. Gross and F. A. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).
124H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).
125D. Ito, K. Mori and E. Carriere, Nuovo Cimento, 51 A, 1119, (1967).

P. A. Cook, Nuovo Cimento Lett. 1, 419 (1971).
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where the dimensionless parameter t corresponding to the string tension is given
by

t =

(
h̄ ω

m0 c2

)
(1896)

and A is given in terms of the quantum numbers as

A = 2 (n− j) + 1 if j = l +
1

2

A = 2 (n+ j) + 3 if j = l − 1

2
(1897)

Hence, find the best fit to the excitation spectra of quarkonium.

12.11 Scattering by a Spherically Symmetric Potential

First, the polarization dependence of scattering of an electron from a Coulomb
potential will be examined in terms of the scattering amplitudes, and second,
by using a partial wave analysis, the scattering amplitudes will be expressed in
terms of phase shifts.

12.11.1 Polarization in Coulomb Scattering.

The scattering of a relativistic electron by a Coulomb force field results in spin-
flip scattering since the electron has a magnetic moment which interacts with
the magnetic field produced in the electron’s rest frame. Since the Coulomb
potential is spherically symmetric, the angular momentum Ĵ2 and Ĵ (3) com-
mute with the Hamiltonian, hence, (j, j3) are constants of motion. However,
the orbital angular momentum L̂ does not commute with Ĥ.

The Dirac wave function ψ(r) can be expressed in terms of two two-component
spinors

ψ(r) =

(
φA(r)
φB(r)

)
(1898)

One only need specify the upper component φA(r), since once φA(r) has been
specified φB(r) is completely determined. For example, for the in and out
asymptotes, the Dirac equation reduces to

(
Ep − m c2 − c p̂ . σ
− c p̂ . σ Ep + m c2

) (
φA(r)
φB(r)

)
= 0 (1899)

Hence, the lower two-component spinor is completely determined in terms of
the upper two-component spinor

φB(r) =
c p̂ . σ

Ep + m c2
φA(r) (1900)
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In the scattering experiment, a plane-wave with momentum p parallel to the
ê3-axis falls incident on the target. The in-asymptote can be described by a
state which is in a superposition of eigenstates of Ŝ(3) given by

ψin± (r) = NEp

(
χ±

± c p
Ep + m c2

χ±

)
exp

[
i
p r

h̄
cos θ

]
(1901)

From the Rayleigh expansion, one observes that the in-asymptotes are not eigen-
states of (Ĵ)2 = (L̂+ Ŝ)2 since they are formed of linear superpositions of many

states with differing eigenvalues of L̂
2

but have a fixed eigenvalue of Ŝ
2
. How-

ever, the in-asymptote are eigenstates of Ĵ (3) = L̂(3) + Ŝ(3) with eigenvalues
± h̄

2 .

Ψin

Ψout

p

p

(θ,ϕ)

Figure 60: The geometry of the asymptotic final state of Mott scattering. At
large r, the beam separated into an unscattered beam ψin and a spherical out-
going wave ψout.

The corresponding out-asymptotes can be described as spherical outgoing
waves. Even though the in-asymptote may have a definite eigenvalue of Ŝ(3),
the spherically symmetric out-asymptote waves may contain a component with
flipped spin, due to the action of the spin-orbit coupling

(
Ŝ . L̂

)
= Ŝ(3) L̂(3) +

1

2

(
Ŝ+ L̂− + Ŝ− L̂+

)
(1902)

active in the vicinity of the target. In spherical polar coordinates, the orbital
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angular momentum raising and lowering operators are given by

L̂± = ± h̄ exp[±iϕ]

(
∂

∂θ
± i cot θ

∂

∂ϕ

)
(1903)

Hence, on noting that
Ŝ± χ± ≡ 0 (1904)

one finds that the out-asymptotes can be expressed as

ψout± (r) = NEp

(
( f(θ) ± g(θ) exp[ ± iϕ ] Ŝ∓ ) χ±

c p ( êr . σ )
Ep + m c2

( f(θ) ± g(θ) exp[ ± iϕ ] Ŝ∓ ) χ±

)
1

r
exp

[
i
p r

h̄

]

(1905)
where êr is a unit vector in the radial direction. It should be noted that the
out-asymptote describes an outgoing spherical wave when r → ∞. Therefore,
the operator ( σ . p̂ ) appearing in the asymptote has simplified since

lim
r→∞

( σ . p̂ ) = lim
r→∞

(
r . σ

r

) [
− i h̄

∂

∂r
+

2 i

h̄

(
Ŝ . L̂

r

) ]

→
(
r . σ

r

) (
− i h̄

∂

∂r

)
(1906)

which reflects that the spin-orbit coupling term is ineffective at r → ∞. Simi-
larly, the effect of the differential operator can be evaluated as

lim
r→∞

− i h̄
∂

∂r

(
1

r
exp

[
i
p r

h̄

] )
→ p

r
exp

[
i
p r

h̄

]
(1907)

In light of the comment about the upper two-component spinor, one sees that
the scattered wave is determined by

(
f(θ)

g(θ) exp[+iϕ]

)
(1908)

for an incident beam with positive helicity, and by

(
−g(θ) exp[−iϕ]

f(θ)

)
(1909)

if the initial beam has a negative helicity. The quantities f(θ) and g(θ) are gen-
eralized scattering amplitudes that have the dimensions of length, and depend
on θ but do not depend on ϕ as both the in and out asymptotes are eigenstates
of Ĵ (3) with eigenvalues ± h̄

2 . A partial wave analysis can be performed on the
Dirac equation to yield expressions for the scattering amplitudes f(θ) and g(θ)
in terms of phase shifts. A detailed knowledge of the scattering amplitudes is
not required for the following analysis.
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If the in-asymptote has the spin quantized along the direction given by
(sin θs cosϕs, sin θs sinϕs, cos θs), the upper component of the Dirac wave spinor
is determined by the two-component spinor

χs =

(
cos θs

2 exp[−iϕs

2 ]

sin θs

2 exp[+iϕs

2 ]

)
(1910)

The out-asymptote is then determined by the two-component spinor

φA(r) =

(
f(θ) cos θs

2 exp[−iϕs

2 ] − g(θ) sin θs

2 exp[+iϕs

2 ] exp[−iϕ]

g(θ) cos θs

2 exp[−iϕs

2 ] exp[+iϕ] + f(θ) sin θs

2 exp[+iϕs

2 ]

)
1

r
exp

[
i
p r

h̄

]

(1911)
The probability for scattering is proportional to

I(θ, ϕ) ∝
∣∣∣∣ f(θ) cos

θs
2

exp[−iϕs
2

] − g(θ) sin
θs
2

exp[+i
ϕs
2

] exp[−iϕ]

∣∣∣∣
2

+

∣∣∣∣ g(θ) cos
θs
2

exp[−iϕs
2

] exp[+iϕ] + f(θ) sin
θs
2

exp[+i
ϕs
2

]

∣∣∣∣
2

=

(
| f(θ) |2 + | g(θ) |2

)
+ sin θs sin(ϕ− ϕs) i

(
f∗(θ) g(θ) − f(θ) g∗(θ)

)

(1912)

which clearly depends on the azimuthal angle ϕ.

If the initial beam is unpolarized, the direction of the initial spin (θs, ϕs)
should be averaged over by integrating over the solid angle dΩs = dϕs dθs sin θs.
This process yields the scattering probability for the unpolarized beam

∫
dΩs
4 π

I(θ, ϕ) =

(
| f(θ) |2 + | g(θ) |2

)
(1913)

which is independent of the azimuthal angle ϕ. It should be noted that the
unpolarized cross-section differs from the polarized cross-section.

Even if the initial beam is unpolarized, the final beam will be partially
polarized. The direction of the net polarization is determined by evaluating the
matrix elements of Ŝ and averaging over the direction of the initial spin, θs and
ϕs. The result is proportional to

Ŝ =
h̄

2
i

[
f∗(θ) g(θ) − f(θ) g∗(θ)

| f(θ) |2 + | g(θ) |2
]

(sinϕ,− cosϕ, 0) (1914)

Hence, the polarization is perpendicular to the scattering plane. It should also
be noted that the net polarization of the scattered wave is determined by the
relative deviation of the scattering cross-section for polarized electrons from the
unpolarized scattering cross-section.
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12.11.2 Partial Wave Analysis

The Dirac equation with a spherically symmetric potential V (r) has solutions
of the form

ψ(r) =

(
f(r)
r

Ω
j± 1

2
j,jz

(θ, ϕ)

i g(r)
r

Ω
j∓ 1

2
j,jz

(θ, ϕ)

)
(1915)

where the two-component spinor spherical harmonics Ω
j± 1

2
j,jz

(θ, ϕ) are given by

Ω
j± 1

2
j,jz

(θ, ϕ) =


 ∓

√
j+ 1

2± 1
2∓jz

2j+1±1 Y
j± 1

2

jz− 1
2

(θ, ϕ)
√

j+ 1
2± 1

2±jz
2j+1±1 Y

j± 1
2

jz+ 1
2

(θ, ϕ)


 (1916)

and the radial functions fκ(r) and gκ(r) satisfy

(
E − V (r) − m c2

)
fκ(r) = − c h̄

(
∂

∂r
− κ

r

)
gκ(r)

(
E − V (r) + m c2

)
gκ(r) = c h̄

(
∂

∂r
+

κ

r

)
fκ(r) (1917)

where κ = ± ( j + 1
2 ). If the momentum h̄ k is defined via

c2 h̄2 k2 = E2 − m2 c4 (1918)

the asymptotic r → ∞ form of the solutions of these coupled equations with
positive values of κ are of the form of a linear superposition

fκ(r)

r
= Aκ jκ(kr) + Bκ ηκ(kr) (1919)

where jκ(kr) and ηκ(kr) are the spherical Bessel and the spherical Neumann
functions. For negative values of κ, the solutions are given by

fκ(r)

r
= Aκ j−κ−1(kr) + Bκ η−κ−1(kr) (1920)

The spherical Bessel and spherical Neumann functions have the asymptotic
forms

jκ(kr) → cos(kr − (κ+ 1)π2 )

kr

ηκ(kr) → sin(kr − (κ+ 1)π2 )

kr
(1921)

The solutions for a free particle do not involve the spherical Neumann functions,
since they are not normalizable at the origin. The amplitudes of the asymptotic
solution in the presence of a finite potential V (r) are usually written as

Bκ
Aκ

= − tan δκ(k) (1922)
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where δκ(k) are the phase shifts that characterize the potential. The phase
shifts depend directly on κ (and the energy) and only depend indirectly on j
and l through κ. The phase shifts are defined so that the asymptotic variation
of the radial functions is given by

fκ(r)

r
∼ eiδκ(k) cos(kr − (κ+ 1)π2 + δκ(k))

r
(1923)

and only differs from the asymptotic variation of the free particle solutions
through the phase shifts. Furthermore, if this is decomposed in terms of incom-
ing and outgoing spherical waves,

fκ(r)

r
∼

exp

[
i

(
k r − (κ+ 1)π2 + 2 δκ(k)

) ]

2 r

+

exp

[
− i

(
k r − (κ+ 1)π2

) ]

2 r
(1924)

their fluxes are equal due to conservation of particles and, as written, the in-
coming spherical waves are not modified by the phase-shifts.

The general asymptotic r → ∞ form of the wave function for the scattering
is composed of the un-scattered wave and a spherical outgoing wave. The polar-
axis is chosen to be parallel to direction of the incident beam which is also chosen
to be the quantization axis for the spin. If the incident beam is polarized with
spin-up, the upper two-component spinor has the form

φA↑ (r) =

(
1
0

)
exp

[
i k r cos θ

]
+

(
f(θ)

g(θ) exp[ i ϕ ]

) exp

[
i k r

]

r
(1925)

whereas for a down-spin polarized incident beam

φA↓ (r) =

(
0
1

)
exp

[
i k r cos θ

]
+

(
− g(θ) exp[ − i ϕ ]

f(θ)

) exp

[
i k r

]

r
(1926)

On recalling the Rayleigh expansion

exp

[
i k r cos θ

]
=
∑

l

il ( 2 l + 1 ) jl(kr) Pl(cos θ) (1927)

one can find the scattered spherical outgoing wave by subtracting the un-
scattered beam from the total wave function. On using the asymptotic large r
variation, one obtains the asymptotic form

exp

[
i k r cos θ

]
→

∑

l

il ( 2 l + 1 )
cos(kr − (l + 1)π2 )

kr
Pl(cos θ) (1928)
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which has a similar form to the asymptotic form of the total wave function.
In particular, the spin and orbital angular momentum eigenstates can be de-
composed in terms of the spinor spherical harmonics. Thus, for the up-spin
polarized incident beam one has the upper two-component spinor

Pl(cos θ) χ+ =

√
4 π

2 l + 1
Y l0 (θ, ϕ) χ+

=

√
4 π

2 l + 1

( √
l + 1 Ωl

l+ 1
2 ,

1
2

−
√
l Ωl

l− 1
2 ,

1
2

)
(1929)

and for the down-spin beam

Pl(cos θ) χ− =

√
4 π

2 l + 1
Y l0 (θ, ϕ) χ−

=

√
4 π

2 l + 1

( √
l + 1 Ωl

l+ 1
2 ,− 1

2
+

√
l Ωl

l− 1
2 ,− 1

2

)
(1930)

Therefore, when expressed in terms of a superposition of continuum energy
eigenstates corresponding to different values of j and κ, the asymptotic form of
the Rayleigh expansion becomes

exp

[
i k r cos θ

]
χ+ →

√
4 π

∑

l

il
cos(kr − (l + 1)π2 )

kr

(√
l + 1 Ωl

l+ 1
2 ,

1
2
−
√
l Ωl

l− 1
2 ,

1
2

)

(1931)
and

exp

[
i k r cos θ

]
χ− →

√
4 π

∑

l

il
cos(kr − (l + 1)π2 )

kr

(√
l + 1 Ωl

l+ 1
2 ,− 1

2
+
√
l Ωl

l− 1
2 ,− 1

2

)

(1932)
Although the coefficients Aκ of the exact wave function are as yet unknown, they
can be determined by requiring the scattered spherical wave does not contain
terms proportional to

exp

[
− i k r

]

r
(1933)

which would represent an incoming spherical wave. This requirement leads to
the outgoing spherical wave having a spin-up component given by

√
4 π

2 i k

∑

l

[
( l + 1 )√

2 l + 1

(
exp[ 2 i δ−l−1(k) ] − 1

)

+
l√

2 l + 1

(
exp[ 2 i δl(k) ] − 1

) ]
Y l0 (θ, ϕ)

exp

[
i k r

]

r

(1934)
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and the down-spin component is given by

√
4 π

2 i k

∑

l

√
l ( l + 1 )

2 l + 1

[ (
exp[ 2 i δ−l−1(k) ] − 1

)

−
(

exp[ 2 i δl(k) ] − 1

) ]
Y l1 (θ, ϕ)

exp

[
i k r

]

r
(1935)

In the above expressions, the index on the phase-shifts δκ(k) refer to the value
of κ. Hence, for a spin-up polarized incident beam, the scattering amplitudes
are given in terms of the phase-shifts via

f(θ) =

√
4 π

2 i k

∑

l

[
( l + 1 )√

2 l + 1

(
exp[ 2 i δ−l−1(k) ] − 1

)

+
l√

2 l + 1

(
exp[ 2 i δl(k) ] − 1

) ]
Y l0 (θ, ϕ) (1936)

and

g(θ) exp[ i ϕ ] =

√
4 π

2 i k

∑

l

√
l ( l + 1 )

2 l + 1

[ (
exp[ 2 i δ−l−1(k) ] − 1

)

−
(

exp[ 2 i δl(k) ] − 1

) ]
Y l1 (θ, ϕ) (1937)

A similar analysis can be applied to the scattering of an incident beam which is
down-spin polarized, giving similar results.

If the incident beam is un-polarized, the elastic scattering cross-section is
given in terms of the scattering amplitudes by

(
dσ

dΩ

)
=

(
| f(θ) |2 + | g(θ) |2

)
(1938)

where the polar angle θ is the scattering angle.

12.12 An Electron in a Uniform Magnetic Field

We shall consider a Dirac electron in a constant magnetic field B = B(z) êz
aligned parallel to the z direction. The vector potential can be chosen such that

A = B x êy (1939)

We shall search for stationary states with energy E, where

ψ =

(
φA

φB

)
exp

[
− i

h̄
E t

]
(1940)
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In the standard representation, the energy eigenvalue equation is represented
by the set of coupled equations

( E − m c2 ) φA(r) = c σ . ( p̂ − q

c
A ) φB(r)

( E + m c2 ) φB(r) = c σ . ( p̂ − q

c
A ) φA(r)

(1941)

Substituting the expression for φB from the second equation into the first, one
obtains the second-order differential equation for φA

( E2 − m2 c4 ) φA = c2
(
σ . ( p̂ − q

c
A )

)2

φA(r)

= c2
(

( p̂ − q

c
A )2 − q h̄

c
σ . B

)
φA(r)

=

(
p̂2 c2 + q2 B2 x2 − 2 q p̂y c B x − q c h̄ σ(z) B

)
φA(r)

(1942)

Since p̂y and p̂z commute with x, one can find simultaneous eigenstates of Ĥ,
p̂y and p̂z. Hence, the two-component spinor φA can be expressed as

φA(r) = exp

[
i ky y + i kz z

]
ΦA(x) (1943)

in which ΦA(x) is a two-component spinor which only depends on the variable
x. In this case, the exponential term can be factored out of the eigenvalue
equation. The resulting equation has the form

[
− h̄2 c2

∂2

∂x2
+ ( c h̄ ky − q B x )2 − q c h̄ B σ(z)

]
ΦA(x) = (E2 −m2 c4 − c2 h̄2 k2

z ) ΦA(x)

(1944)
The equations decouple if the two-component spinor ΦA(x) can be taken to be
an eigenstate of the z-component of the spin operator

ΦA(x) = f(x) χσ (1945)

where
σ(z) χσ = σ χσ (1946)

in which the eigenvalues of σ(z) are denoted by σ. Therefore, the eigenvalue
equation can be reduced to

[
− h̄2 c2

∂2

∂x2
+ ( q B )2

(
x− c h̄ ky

q B

)2 ]
f(x) = (E2 −m2 c4 − c2 h̄2 k2

z + q c h̄ B σ ) f(x)

(1947)
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which (apart from an overall scale factor) is formally equivalent126 to the (non-
relativistic) energy eigenvalue equation for a shifted harmonic oscillator, with
frequency 2 c | q | B. The modulus sign was inserted to ensure that the frequency
ωHO is positive. The energy eigenvalues are determined from

( E2 − m2 c4 − c2 h̄2 k2
z + q c h̄ B σ ) = 2 | q | c h̄ B ( n +

1

2
) (1948)

Hence, for an electron with negative charge q = − e one finds that the positive-
energy eigenvalue is given by the solution

E = c

√
m2 c2 + h̄2 k2

z + ( 2 n + 1 + σ )
| e | h̄
c

B (1949)

This expression has an infinite degeneracy as it is independent of the continuous
variable ky. It also has a discrete (two-fold) degeneracy between the levels with
quantum numbers (n, σ = 1) and (n + 1, σ = −1). The two-fold degeneracy
can be understood as a consequence of the generalized helicity σ . ( p̂ − q

c
A )

commuting with the Hamiltonian Ĥ. This results in the spin’s alignment with
the electron’s velocity being preserved, as the spin’s precession is precisely bal-
anced by the electron’s orbital precession. It should be noted that if the g factor
deviates from 2, and such an anomaly in the g factor is expected from Quantum
Electrodynamics and has been found in experiment, then this degeneracy will
be lifted. The calculated ( g − 2 ) anomaly for an electron is given by

(
g − 2

2

)

Theor
=

1

2

(
α

π

)
− 0.3284986

(
α

π

)2

+ 1.17611

(
α

π

)3

− 1.434

(
α

π

)4

+ . . .

(1950)
where

α =

(
e2

h̄ c

)
(1951)

is the fine structure constant. The experimentally determined value of the g
anomaly is found as

(
g − 2

2

)

Expt
= 0.0011659208 (1952)

126The explicit (but dimensionally incorrect) analogy is obtained by setting the Harmonic
Oscillator mass, mHO, as

mHO =
1

2 c2

and then determine the frequency from

m2

HO ω2

HO =

(
q B

c

)2

.
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and differs from the theoretical value in the last two decimal places127. In
the non-relativistic limit, the expression for the relativistic energy eigenvalue
reproduces the expression for energies of the well-known Landau levels

E ≈ m c2 +
h̄2 k2

z

2 m
+ ( n +

1 + σ

2
)

( | e | h̄ B
m c

)
(1953)

which are doubly-degenerate.

12.13 Motion of an Electron in a Classical Electromag-

netic Field

Consider an electron in a classical electromagnetic field represented by the real
vector potential Aµ. For simplicity, electromagnetic field will be represented by
a plane wave defined over Minkowski space that depends on the phase φ defined
by

φ = kµ x
µ (1954)

Hence, the vector potential is written as

Aµ = Aµ(φ) (1955)

The vector potential satisfies the Lorentz Gauge condition

∂µ A
µ = kµ A

µ(φ)′ = 0 (1956)

where the prime indicates differentiation with respect to φ. The classical vector
potential must satisfy the source-free wave equation

∂ν ∂
ν Aµ = kν k

ν Aµ(φ)′′ = 0 (1957)

which results in the condition

kν k
ν = 0 (1958)

which is the dispersion relation for a free electromagnetic field.

The Dirac equation for a spin one-half particle with charge q can be used to
obtain the second-order differential equation

[
− h̄2 ∂µ ∂

µ − 2 i h̄
q

c
Aµ ∂µ +

q2

c2
Aµ A

µ −m2 c2 − i h̄
q

c
γµ kµ γ

ν Aν(φ)′
]
ψ = 0

(1959)

127This discrepancy could indicate the importance of virtual processes in which heavy par-
ticle/antiparticle pairs are created. The (g − 2) anomalies for the muon and its anti-particle
have also been measured [G. W. Bennett et al., Phys. Rev. Lett. 92, 1618102 (2004).].
These experiments show that particles and anti-particles precess at the same rate. However,
the value of the (g − 2) anomaly is inconsistent with the theoretical prediction based on the
standard model of particle physics.
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where ψ is the four-component Dirac spinor. In deriving this, the Lorenz gauge
condition has been used to re-write

γµ γν ∂µ

(
Aν ψ

)
= γµ γν ∂µ

(
Aν ψ

)
− gµ,ν

(
∂µ Aν

)
ψ

(1960)

in the diagonal terms.

Following Volkow128, the solution of the second-order differential equation
can be found in the form

ψ = exp

[
− i

pµ x
µ

h̄

]
F (φ) (1961)

where pµ is a four-vector and F (φ) is a four-component spinor. This form re-
duces to the form of a free particle solution when Aµ ≡ 0 in which case pµ
becomes the momentum of the free particle. The exponential form is unaltered
when the vector potential is non-zero since arbitrary multiples of the electro-
magnetic wave vector k can be added to the momentum of the free particle, in
which case pµ has a different interpretation. For a transverse polarized vector
potential describing an electromagnetic wave travelling in the ê3 direction, the
operators

p̂1 = i h̄ ∂1

p̂2 = i h̄ ∂2 (1962)

commute with the time-dependent Dirac Hamiltonian and are constants of mo-
tion. Although the particle’s energy and momentum operators do not commute
with the Hamiltonian, as these quantities are not conserved due to the interac-
tion with the field, the quantity

p̂3 − p̂0 = i h̄

(
∂3 − ∂0

)
(1963)

does commutes with the Hamiltonian and, therefore, is conserved. The con-
servation of this quantity can be interpreted in terms of the energy absorbed
or emitted by the electron due to interaction with the classical electromagnetic
field being accompanied by the absorption or emission of similar amount of mo-
mentum129. Despite the different interpretation of pµ in the presence of the
classical field, the four-vector pµ shall be chosen to satisfy the condition

pµ pµ = m2 c2 (1964)

which is the dispersion relation for a free electron130.

128D. M. Volkow, Zeit. für Physik, 94, 25 (1935).
129For the quantized electromagnetic field, the absorption of a photon involves the absorption

of the energy and momentum given by the four-vector h̄ kµ, where kµ = (k, 0, 0, k).
130If the condition on pµ is dropped, the function F (φ) will acquire an overall phase factor

that depends linearly on φ and on the constant value of pµ pµ − m2 c2.
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The form of the wave function of eqn(1961) is to be substituted into the
second-order differential eqn(1959). It shall be noted that

Aµ ∂µ F (φ) = kµ A
µ F (φ)′ = 0

∂µ ∂µ F (φ) = kµ kµ F (φ)′′ = 0 (1965)

since Aµ satisfies the Lorenz gauge condition and kµ satisfies the dispersion
relation for electromagnetic waves in vacuum. On substituting the ansatz into
the second-order equation, using the above two equations and the choice of pµ
satisfying the free-electron dispersion relation, one finds that the second-order
equation reduces to a first-order differential equation for the spinor F (φ)

2 i h̄ pµ k
µ F (φ)′ =

[
2
q

c
Aµ pµ − q2

c2
Aµ Aµ + i h̄

q

c
γµ kµ γ

ν Aν(φ)′
]
F (φ)

(1966)
which only depends on φ since the exponential phase-factor which depends on
pµ x

µ has been factored out. The first-order equation can be integrated w.r.t.
φ to yield

F (φ) = exp

[
− i q

h̄ c pλ kλ

∫ φ

0

(
pµ Aµ(φ

′) − 1

2

q

c
Aµ(φ′)Aµ(φ

′)

)
dφ′ +

q

c

γµ kµ γ
ν Aν

2 pλ kλ

]
F (0)

(1967)
where F (0) is an arbitrary constant four-component spinor. The exponential of
the matrix is defined in terms of its series expansion.

F (φ) = exp

[
− i q

h̄ c pλ kλ

∫ φ

0

(
pµ Aµ(φ

′) − 1

2

q

c
Aµ(φ′) Aµ(φ

′)

)
dφ′

]

× exp

[
q

c

γµ kµ γ
ν Aν

2 pλ kλ

]
F (0) (1968)

The above form can be simplified by expanding the last exponential factor due
to the identity (

γµ kµ γ
ν Aν

)n
= 0 (1969)

for all integers n such that n > 1. The identity can be proved by

γµ kµ γ
ν Aν γ

τ kτ γ
ρ Aρ = − γµ kµ γ

τ kτ γ
ν Aν γ

ρ Aρ + 2 gν,τ Aν kτ γ
µ kµ γ

ρ Aρ

= − γµ kµ γ
τ kτ γ

ν Aν γ
ρ Aρ (1970)

where the first line follows by using the anti-commutation relations for the γ
matrices and the second line follows from applying the Lorenz gauge condition.
The expression can be further simplified by noting that on anticommuting the
first pair of γ matrices, one has

= − γµ kµ γ
τ kτ γ

ν Aν γ
ρ Aρ

= γτ kτ γ
µ kµ γ

ν Aν γ
ρ Aρ + 2 gµ,τ kµ kτ

= γτ kτ γ
µ kµ γ

ν Aν γ
ρ Aρ

= γµ kµ γ
τ kτ γ

ν Aν γ
ρ Aρ (1971)
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the third line follows from the condition kµ kµ = 0 and the last line follows
from interchanging the first two pairs of summation indices. On comparing the
first and last lines, one notes that the right-hand side is zero. Therefore, one
has proved the identity

γµ kµ γ
ν Aν γ

τ kτ γ
ρ Aρ = 0 (1972)

Using, the above identity, the spinor F (φ) can be expanded as

F (φ) = exp

[
− i q

h̄ c pλ kλ

∫ φ

0

(
pµ Aµ(φ

′) − 1

2

q

c
Aµ(φ′) Aµ(φ

′)

)
dφ′

]

×
(
Î +

q

c

γµ kµ γ
ν Aν

2 pλ kλ

)
F (0) (1973)

Hence, the spinor solution of the second-order differential equation can be ex-
pressed as

ψ(x) = exp

[
i
S

h̄

] (
Î +

q

c

γµ kµ γ
ν Aν

2 pλ kλ

)
F (0) (1974)

where S given by

S = − pµ x
µ − q

c pλ kλ

∫ φ

0

(
pµ Aµ(φ

′) − 1

2

q

c
Aµ(φ′) Aµ(φ

′)

)
dφ′ (1975)

is the classical action of a particle moving in an electromagnetic field.

If the above equation is to be a solution of the Dirac equation, one needs to
exclude redundant solutions of the second-order equation. This can be achieved
by demanding that as r → ∞ one has Aµ → 0. In this limit, the above
solution reduces to

ψ → exp

[
− i

pµ x
µ

h̄

]
F (0) (1976)

which satisfies the Dirac equation if
(
γµ pµ − m c

)
F (0) = 0 (1977)

Therefore, one demands that F (0) satisfies the above supplementary condition
which is the same as for a free particle. Hence, one can set

F (0) = NF




χσ

p . σ

p(0) + m c
χσ


 (1978)

where the normalization constant is given by

NF =

√
p(0) + m c

2 p(0) V
(1979)

344



The spectrum of eigenvalues of the electron’s energy can be found by Fourier
transforming the above solution with respect to time, which shows that the elec-
tron absorbs and emits radiation in multiples of h̄ ω. The Volkov solutions have
been used to describe the Compton scattering of electrons by intense coherent
laser beams, and is also the basis of the strong-field approximation sometimes
found useful in atomic physics131.

The current density is derived from the expression

jµ = c ψ
†
γµ ψ (1980)

Since the Dirac adjoint spinor is given by

ψ
†

= F
†
(0)

(
Î +

q

c

γν Aν γ
µ kµ

2 pλ kλ

)
exp

[
− i

S

h̄

]
(1981)

the current density is evaluated as

jµ =
c

p(0) V

[
pµ − q

c
Aµ + kµ

(
q

c

pν A
ν

kλ pλ
− q2

c2
Aν A

ν

2 kλ pλ

) ]
(1982)

Hence, the current is composed of a constant component pµ and an oscillatory
component form the vector potential, and an oscillatory component which is
second order in the vector potential. This implies that the electromagnetic field
has measurable consequences. For a vector potential Aµ which is a periodic
function with a time-averaged value of zero, the time-averaged current density
is given by

jµ =
c

p(0) V

[
pµ − kµ

(
q2

c2
Aν Aν

2 kλ pλ

) ]
(1983)

which shows that the electromagnetic wave does not drop out from time-averaged
quantities.

12.14 The Limit of Zero Mass

The Dirac equation has the form

γµ p̂µ ψ = m c ψ (1984)

where the γ matrices are any set of matrices which satisfy the anti-commutation
relations

γµ γν + γν γµ = 2 gµ,ν Î (1985)

131L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964). [Sov. Phys. J.E.T.P. 20, 1307
(1965).]
F. H. M. Faisal, J. Phys. B 6, L89 (1973).
H. R. Reiss, Phys. Rev. A 22, 1786 (1980).
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The Dirac equation is independent of the specific representation of the γ matri-
ces. We have chosen the representation

γ(0) =

(
I 0
0 −I

)
(1986)

and

γ(i) =

(
0 σ(i)

−σ(i) 0

)
(1987)

where σ(i) are the Pauli-matrices. This is the standard representation.

We can find other representations which differ through unitary transforma-
tions

ψ′ = Û ψ (1988)

where the explicit form of the γ matrices transform via

γµ′ = Û γµ Û† (1989)

and the Dirac adjoint is transformed via

ψ
†′ = ψ′† γ(0)′ (1990)

These unitary transformations of the gamma operators keep matrix elements of
the form ∫

d3r ψ† Â ψ (1991)

invariant.

The chiral representation is found by performing the unitary transform

Û =
1√
2

(
I −I
I I

)
(1992)

starting with the standard representation. In the chiral representation, the γ
matrices have the form

γ(0)′ =

(
0 I
I 0

)
(1993)

and

γ(i)′ =

(
0 σ(i)

−σ(i) 0

)
(1994)

The components of the wave function in the chiral representation ψ′ are denoted
as

ψ′ =

(
φL′

φR′

)
(1995)
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The components φL and φR are related to the components of ψ in the standard
representation via

(
φL′

φR′

)
=

1√
2

(
φA − φB

φA + φB

)
(1996)

The chiral representation is particularly useful for the description of massless
spin one-half particles, such as might be the case for the neutrino. The neutrino
masses are extremely small. The masses have evaded direct experimental mea-
surement. However, direct measurements have set upper limits on the masses
which decrease with time132. In this case, with the limit m → 0, the Dirac
equation takes the form




0

(
∂
∂t

+ c σ . ∇
)

(
∂
∂t

− c σ . ∇
)

0



(

φL′

φR′

)
= 0 (1997)

Hence, the Dirac equation for a massless free particle reduces to two uncoupled
equations, each of which are equations proposed by Weyl133

(
∂

∂t
+ c σ . ∇

)
φR′ = 0 (1998)

and (
∂

∂t
− c σ . ∇

)
φL′ = 0 (1999)

The Weyl equation describes a spin one-half massless particle by a two com-
ponent spinor wave function. The Weyl equation violates parity invariance.
The Weyl equation was considered to be un-physical until the discovery of the
(anti-)neutrino134 and the associated violation of parity invariance135. After the
parity violation of the weak interaction was established, the Weyl equation was
adopted to describe the neutrino136.

Inexplicably nature seems to have selected the Weyl equation for φL, but not
φR to describing neutrinos. The solutions of the Weyl equation for free particles

(
∂

∂t
− c σ . ∇

)
φL = 0 (2000)

132L. Langer and R. Moffat, Phys. Rev. 88, 689 (1952).
V. A. Lyubimov, F. G. Novikov, V. Z. Nozik, F. F. Tretyakov, and V. S. Kosik, Phys. Lett.
94B, 266 (1980).
A. I. Belesev et al., Phys. Lett. 350, 263 (1995).
133H. Weyl, Zeit. für Physik, 56, 330 (1929).
134C. L. Cowan Jr., F. Reines, F. B. Harrison, H. W. Kruse and A. D. McGuire, Science

124, 103 (1956).
F. Reines and C. L. Cowan Jr., Phys. Rev. 113, 273 (1959).
135C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes and R. F. Hudson, Phys. Rev. 108,

1413 (1957).
136T. D. Lee and C. N. Yang, Phys. Rev. 105, 1671 (1957).

A. Salam, Nuovo Cimento 5, 299 (1957).
L. Landau, Nuclear Phys. 3, 127 (1957).
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can be written as

φL =

(
u(0)

u(1)

)
1√
V

exp

[
− i

h̄
( E t − p . r )

]
(2001)

Since helicity is conserved, one can choose the direction of p as the axis of
quantization. The positive-energy solution is given by

φL− =

(
0
1

)
1√
V

exp

[
− i

h̄
( E t − p z )

]
(2002)

which has negative helicity and has energy given by

E− = c p (2003)

The negative-energy solution is given by

φL+ =

(
1
0

)
1√
V

exp

[
− i

h̄
( E t − p z )

]
(2004)

which has positive helicity and the energy is given by

E+ = − c p (2005)

This negative-energy solution will describe anti-particles. The Weyl equation for
φR has a positive-energy solution with positive helicity, and a negative-energy
solution with negative helicity. Since only neutrinos with negative helicity are
observed in nature, only φL is needed. The anti-neutrinos have positive helicity
and are represented by φR.

Elementary Excitations

φL E

ν∗ νφR Λ=−1 Λ=+1 Λ=−1

Λ=+1

Figure 61: The dispersion relations for φL and φR. The elementary excitations
are the negative-helicity neutrino ν and a positive-helicity anti-neutrino ν.

The Neutrino

The neutrino was postulated by Pauli to balance energy and momentum
conservation in beta decay. In beta decay, it had been observed that neutron
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decay products included a proton and an electron. However, it was observed
that the emitted electron had a continuous range of kinetic energies. Therefore,
another neutral particle must have been emitted in the decay. This particle was
termed the anti-neutrino, and the reaction can be written as

n → p + e− + νe (2006)

Conservation of angular momentum requires that the neutrino has a spin of h̄2 .
Furthermore, since an energy of 1.2934 MeV is released in the transformation of
a neutron to a proton, and since sometime the decay processes produce electrons
which seem to take up all the released energy, the neutrino was suggested as
having zero mass. An upper limit on the neutrino’s mass of a few eV follows
from the Fermi-Kurie plot137. The Fermi-Kurie plot of the electron energy
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Figure 62: The Fermi-Kurie plot of the energy distribution of the electrons
emitted in the beta decay of tritium, 3H → 3He+ e− + νe. The decay releases
18.1 keV. It is seen that the electrons produced in the decay process have a
non-zero probability for carrying off most of the released energy. Hence, one
concludes that the anti-neutrinos are almost massless. The dashed blue curve
is the curve expected if the neutrino had a mass of 3 keV.

distribution is based on the phase space available for the emission of the electron
and anti-neutrino138. The joint phase-space available for the electron of four-
momentum (Ee/c, p) and the anti-neutrino of four-momentum is (Eν/c, q) is
proportional to the factor

dΓ = dp p2

∫
dq q2 δ(E − Ee(p) − Eν(q))

= dEe(p)
p Ee(p)

c2

∫
dEν(q)

q Eν(q)

c2
δ(E − Ee(p) − Eν(q))

137L. Langer and R. Moffat, Phys. Rev. 88, 689 (1952).
V. A. Lyubimov, F. G. Novikov, V. Z. Nozik, F. F. Tretyakov, and V. S. Kosik, Phys. Lett.
94B, 266 (1980).
A. I. Belesev et al., Phys. Lett. 350, 263 (1995).
138E. Fermi, Zeit. für Physik, 88, 161 (1934).

F. N. D. Kurie, J. R. Richardson and H. C. Paxton, Phys. Rev. 48, 167 (1935).
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=
1

c5
dEe(p) p Ee(p)

√
Eν(q)2 − m2

ν c
4 Eν(q)

∣∣∣∣
Eν(q)=E−Ee(p)

=
1

c5
dEe(p) p Ee(p)

√
( E − Ee(p) )2 − m2

ν c
4 ( E − Ee(p) )

(2007)

where, since the anti-neutrino’s trajectory is unobservable, its momentum is in-
tegrated over. This phase-space factor partially governs the energy distribution
of the emitted electrons. The second to last factor in the accessible volume
of phase-space contains the dependence on the anti-neutrino’s mass mν and it
is this factor which is high-lighted by the Fermi-Kurie plot. The plot is de-
signed to exhibit a linear energy variation until the line cuts the E-axis, if the
anti-neutrino is massless. On the other hand, if the anti-neutrino has a finite
mass, the line should curve over and cut the E-axis vertically. In this case, the
anti-neutrino mass would be determined by the difference between the linearly
extrapolated intercept and the actual intercept.

The process of beta decay does not conserve parity. The non-conservation
of parity was discovered in the experiments of C. S. Wu et al.139. In these
experiments, the spin of a 60Co nucleus was aligned with a magnetic field. The
spin S = 5h̄ 60Co nucleus decayed into a spin S = 4h̄ 60Ni nucleus by emitting
an electron and an anti-neutrino.

60Co → 60Ni + e− + νe (2008)

Since angular momentum is conserved, the spin of the electron and the anti-
neutrino initially must both be aligned with the field. In the experiment, the
angular distribution of the emitted electrons was observed. Because the helicity
of the electrons is conserved, the angular distribution of the electrons can be
used to prove that the electrons all have negative helicity, and hence it is inferred
that the anti-neutrinos should have positive helicity. Since helicity should be
reversed under the parity operation, and since only negative helicity electrons
are observed, the process is not invariant under parity. Hence, parity is not
conserved.

The electrons that are emitted in beta decay have negative helicities. If
the momentum of an emitted electron is given by (p, θp, ϕp), then its helicity
operator is

Λp =

(
cos θp sin θp exp[−iϕp]

sin θp exp[+iϕp] − cos θp

)
(2009)

The helicity operator has eigenstates χ given by

Λp χ
±
θp

= ± χ±
θp

(2010)

139C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes and R. F. Hudson, Phys. Rev. 108,
1413 (1957).
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which are determined as

χ+
θp

=

(
cos

θp

2 exp[−iϕp

2 ]

sin
θp

2 exp[+i
ϕp

2 ]

)

χ−
θp

=

(
− sin

θp

2 exp[−iϕp

2 ]

cos
θp

2 exp[+i
ϕp

2 ]

)
(2011)

Since angular momentum is conserved and the emitted electrons only have neg-
ative helicity, the angular distribution of the emitted electrons is proportional to
the square of the overlap of the initial electron spin-up spinor with the negative
helicity spinors

| χ+
θ=0

† χ−
θp

|2 = sin2 θp
2

=
1

2
( 1 − cos θp ) (2012)

which is in exact agreement with the experimentally observed distribution. From
the distribution of emitted electrons one is led to expect that the anti-neutrino
has positive helicity.

The helicity of the neutrino was measured in an experiment performed by
Maurice Goldhaber et al.140. In the experiment, a 152Eu nucleus with J = 0

140M. Goldhaber, I. Grodzins, A. W. Sunyar, Phys. Rev. 109, 1015 (1958).

Co  
S=5h Ni 

S=4h

e-

S=h/2

νe

S=h/2

Figure 63: The spin S = 5h̄ of the Co nucleus is aligned with the magnetic field.
The Co undergoes beta decay to Ni which has S = 4h̄ by emitting an electron
e− and an anti-neutrino νe. The spin of the electron and the anti-neutrino
produced by the decay must initially be aligned with the magnetic field, due to
conservation of angular momentum.

351



0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

θ/π
I(

θ)
Figure 64: The angular distribution of the emitted electron in the beta decay
experiment of Wu et al.

captures an electron from the K-shell and decays to the excited state of a 152Sm
nucleus with angular momentum J = h̄ and emits a neutrino.

152Eu + e− → 152Sm∗ + νe (2013)

The J = h̄ excited state of Sm∗ subsequently decays into the J = 0 ground
state of Sm by emitting a photon.

152Sm∗ → 152Sm + γ (2014)

Goldhaber et al. measured the photons with the full Doppler shift, from which
they were able to infer the direction of the recoil of the nucleus. The photons

e
-

νeγ

Eu

Sm

Sm* νe

J=0Λγ=−1

J=1

Figure 65: A schematic depiction of the experiments of Goldhaber et al. which
determined the helicity of the neutrino.

were observed to be right-circularly polarized, which corresponds to having a
negative helicity. Therefore, the photon’s spin was parallel to the momentum of
the emitted neutrino. Since the ground state of Sm has zero angular momentum,
the excited state of the Sm∗ nucleus must have had its angular momentum
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oriented along the direction of motion of the emitted neutrino. Since the sum of
the angular momentum of the excited state (J = h̄) and the emitted neutrino
must equal the spin of the captured electron h̄

2 , the neutrino must have its spin
oriented anti-parallel to the angular momentum of the Sm∗ nucleus. Hence, the
neutrino has negative helicity.

12.15 Classical Dirac Field Theory

The Dirac Lagrangian density is given by

L = ψ
†
(
i h̄ c γµ ( ∂µ + i

q

c h̄
Aµ ) − m c2

)
ψ (2015)

which, since ψ† and ψ are independent, the momentum conjugate to ψ is

Π =
1

c

∂L
∂(∂0ψ)

= i h̄ ψ
†
γ(0)

= i h̄ ψ† (2016)

The momentum conjugate to ψ† vanishes

Π† =
1

c

∂L
∂(∂0ψ†)

= 0 (2017)

The Lagrangian equation of motion is found from the variational principle which
states that the action is extremal with respect to ψ and ψ†. The condition that
the action is extremal with respect to variations in ψ† leads to the Dirac equation

i h̄ γµ ( ∂µ + i
q

c h̄
Aµ ) ψ = m c ψ (2018)

after the resulting equation has been multiplied by a factor of γ(0). On making
a variation of the action with respect to ψ, one finds the Hermitean conjugate
equation

− i h̄ c ( ∂µ − i
q

c h̄
Aµ ) ψ

†
γµ − m c2 ψ

†
= 0 (2019)

That this is the Hermitean conjugate of the Dirac equation can be shown by
taking its Hermitean conjugate, which results in

i h̄ c γµ† γ(0) ( ∂µ + i
q

c h̄
Aµ ) ψ − m c2 γ(0) ψ = 0 (2020)

The above equation can be reduced to the conventional form by multiplying by
γ(0) and by using the identities

γ(0) γ(0) = Î

γ(0) γµ† γ(0) = γµ (2021)
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Hence, the equation found by varying ψ is just the Hermitean conjugate of the
Dirac equation

i h̄ γµ ( ∂µ + i
q

c h̄
Aµ ) ψ = m c ψ (2022)

Furthermore, it is surmised that the starting Lagrangian is appropriate to de-
scribe the Dirac field theory.

The Hamiltonian density H is determined from the Lagrangian by the usual
Legendre transformation process

H = c Π ∂0 ψ + c Π† ∂0 ψ
† − L

= i h̄ c ψ† ∂0 ψ − L
= i h̄ c ψ

†
γ(0) ∂0 ψ − L

= − i h̄ c ψ
†
γ . ( ∇ − i

q

c h̄
A ) ψ + ψ

†
( m c2 + q γ(0) A(0) ) ψ

(2023)

where the relation between the covariant components of the vector potential to
the contravariant components A(i) = − A(i) has been used in the last line.
The result is identifiable with the Hamiltonian density that appears in the usual
expression for the quantum mechanical expectation value for the energy for the
Dirac electron.

The set of conserved quantities can be obtained from Noether’s theorem.
The momentum-energy tensor Tµν is given by

Tµν =
∂L

∂(∂µψ)
∂νψ +

∂L
∂(∂µψ†)

∂νψ
† − δµν L (2024)

which is evaluated as

Tµν = i h̄ c ψ
†
γµ ∂νψ − δµν L

= i h̄ c ψ
†
γµ ∂νψ + δµν

[
− i h̄ c ψ

†
γρ ( ∂ρ + i

q

c h̄
Aρ ) ψ + m c2 ψ

†
ψ

]

(2025)

Hence, one finds the energy density T 0
0 is given by

T 0
0 = − i h̄ c ψ

†
γ . ( ∇ − i

q

c h̄
A ) ψ + ψ

†
( m c2 + q γ(0) A(0) ) ψ

= − i h̄ c ψ† α . ( ∇ − i
q

c h̄
A ) ψ + ψ† ( β m c2 + q A(0) ) ψ

(2026)

which is the Hamiltonian density H. On integrating over all space, one sees
that the energy of the Dirac Field is equal to the expectation value of the Dirac
Hamiltonian operator

∫
d3r T 0

0 =

∫
d3r ψ† Ĥ ψ (2027)

354



Likewise, (c times) the momentum density T 0
j is found from

T 0
j = i h̄ c ψ

†
γ(0) ∂jψ

= i h̄ c ψ† ∂jψ

= c ψ† p̂j ψ (2028)

where the partial derivative has been identified with the covariant momentum
operator. Hence, the contravariant component of the momentum is given by

T 0,j = − i h̄ c ψ† ∂

∂xj
ψ

= c ψ† p̂(j) ψ (2029)

where the usual (contravariant) momentum operator is defined as

p̂(j) = − i h̄
∂

∂xj
(2030)

Therefore, the j-th component of the momentum is given by

P (j) =
1

c

∫
d3r T 0,j =

∫
d3r ψ† p̂(j) ψ (2031)

which is equal to the expectation value of the momentum operator.

One can also determine the conserved Noether charges by noting that the
Lagrangian is invariant under a global gauge transformation

ψ → ψ′ = exp

[
+ i ϕ

]
ψ

ψ∗ → ψ′∗ = exp

[
− i ϕ

]
ψ

∗

(2032)

where ϕ is a constant real number. The infinitesimal global gauge transforma-
tion produces a variation in the (independent) fields

δψ = + i δϕ ψ

δψ∗ = − i δϕ ψ∗ (2033)

Since the Lagrangian is invariant under the transformation, then

δL = 0 (2034)

so we have

0 = δ L
=

(
∂L
∂ψ

)
δψ +

(
∂L
∂ψ∗

)
δψ∗ +

(
∂L

∂(∂µψ)

)
δ(∂µψ) +

(
∂L

∂(∂µψ∗)

)
δ(∂µψ

∗)

(2035)
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After substituting the Euler-Lagrange equations for the derivatives w.r.t. the
fields ψ and ψ∗, the variation is expressed as

0 = ∂µ

[ (
∂L

∂(∂µψ)

)
δψ +

(
∂L

∂(∂µψ∗)

)
δψ∗

]
(2036)

For an arbitrary gauge transformation through the fixed infinitesimal angle δϕ,
this condition becomes

0 = i δϕ ∂µ

[ (
∂L

∂(∂µψ)

)
ψ −

(
∂L

∂(∂µψ∗)

)
ψ∗
]

(2037)

Hence, one finds that there is a current jµ which satisfies the continuity equation

∂µ j
µ = 0 (2038)

where (apart from the infinitesimal constant of proportionality) the current is
given by

jµ ∝ i δϕ

[ (
∂L

∂(∂µψ)

)
ψ −

(
∂L

∂(∂µψ∗)

)
ψ∗
]

(2039)

For the Dirac Lagrangian, the second term is identically zero and the first term
is non-zero. Hence, on adopting a conventional normalization, the conserved
current is identified as

jµ = c ψ
†
γµ ψ (2040)

This is the same expression for the conserved current that was previously derived
for the one-electron Dirac equation. Hence, the one-particle Dirac equation
yields the same expectation values and obeys the same conservation laws as the
(classical) Dirac field theory.

12.15.1 Chiral Gauge Symmetry

In the limit of zero mass, the Dirac Lagrangian takes the form

L = i h̄ c ψ
†
γµ ∂µ ψ (2041)

Starting with the standard representation and making the unitary transform

Û =
1√
2

(
I −I
I I

)
(2042)

one finds that in the chiral representation the Dirac Lagrangian reduces to

L = i h̄ c

(
φ†L σµL ∂µ φ

L + φ†R σµR ∂µ φ
R

)
(2043)

where φL and φR are two-component Dirac spinors and the two sets of quantities
σµ and σ̃µ are expressed in terms of the Pauli matrices as

σµL = ( σ0 , − σ )

σµR = ( σ0 , σ ) (2044)
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The difference between σµL and σµR reflect the different chirality of φL and φR. In
the absence of the mass term, the Dirac Lagrangian possesses two independent
scalar gauge transformations. These transformations corresponds to the global
gauge transformations

φL → φL′ = φL exp

[
i θL

]

φR → φR′ = φR exp

[
i θR

]
(2045)

where θL and θR are independent angles. The Lagrangian has a U(1) × U(1)
gauge symmetry. The presence of a mass term would couple the two fields and
reduce the gauge transformation to one in which θR = θL.

In the chiral representation, the Hermitean matrix defined by

γ(4) = i γ(0) γ(1) γ(2) γ(3) (2046)

takes the form

γ(4) =

(
−I 0
0 I

)
(2047)

The general gauge transformations for the massless fermion can be expressed as
the product of two independent transformations

ψ → ψ′ = exp

[
i

(
θL + θR

2

)
Î

]
exp

[
i

(
θR − θL

2

)
γ(4)

]
ψ (2048)

where ψ is a four-components spinor

ψ =

(
φL

φR

)
(2049)

The first factor represents the usual global gauge transformation for the Dirac
Lagrangian with finite mass. This transformation yields the usual conserved
four-vector current jµV defined by

jµV = c ψ
†
γµ ψ (2050)

The second factor is specific to the Dirac Lagrangian with zero mass. It is
called the chiral transformation or axial U(1) transformation. Using the anti-
commutation relation

{ γ(4) , γµ }+ = 0 (2051)

one can show that the exponential factor in the chiral gauge transformation has
the property that

γµ exp

[
i

(
θR − θL

2

)
γ(4)

]
= exp

[
− i

(
θR − θL

2

)
γ(4)

]
γµ (2052)
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This property can be used to show that the Lagrangian is invariant under the
chiral transformation because

ψ
†′ γµ ∂µ ψ

′ = ψ† exp

[
− i

(
θR − θL

2

)
γ(4)

]
γ(0) γµ ∂µ exp

[
i

(
θR − θL

2

)
γ(4)

]
ψ

= ψ† γ(0) γµ ∂µ ψ

= ψ
†
γµ ∂µ ψ (2053)

which involves two commutations. Since the massless Dirac Lagrangian is invari-
ant under the chiral transformation, Noether’s theorem shows that the current

jµA = c ψ
†
γµ γ(4) ψ (2054)

is conserved. This conserved current transforms like a vector under proper
orthochronous Lorentz transformations but does not transform as a vector under
improper orthochronous transformations. Therefore, the current is an axial

current. The conserved axial density j
(0)
A is given by

j
(0)
A = ψ

†
γ(0) γ(4) ψ

= ψ† γ(4) ψ

= − φ†L φL + φ†R φR (2055)

which is the difference between the number of particles with positive helicity
and the number of particles with negative helicity.

In the presence of a massm, the Dirac Lagrangian in the chiral representation
is

L = i h̄ c

(
φ†L σµL ∂µ φ

L + φ†R σµR ∂µ φ
R

)
− m c2

(
φ†L φR + φ†R φL

)

(2056)
and one finds that the axial current is not conserved because the mass term is
not invariant and acts like a current source

∂µ j
µ
A = i

2 m c

h̄
ψ
†
γ(4) ψ (2057)

To summarize, just like the Proca equation yields a zero mass for the photon
if one imposes U(1) gauge invariance on the electromagnetic field141, the neu-
trino must have zero mass if one imposes a global U(1) chiral gauge invariance.
Furthermore, the existence of conservation of chirality for the massless neutrino
implies that the weak interaction must involve a coupling proportional to a fac-
tor of either (Î + γ(4)) or (Î − γ(4)).

141Schwinger has noted that the condition of gauge invariance does not necessarily result
in the photon being massless. He argued that if the electromagnetic coupling strength were
larger, the photon could have finite mass. [J. Schwinger, “Gauge Invariance and Mass”,
Physical Review, 125, 397 (1962).]
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Exercise:

By considering an infinitesimal chiral gauge transformation on the Lagrangian
for massive Dirac particles, determine δL and show that this leads to the axial
current jµA not being conserved.

12.16 Hole Theory

The negative-energy solutions of the Dirac equation lead to the conclusion that
one-particle quantum mechanics is an inadequate description of nature. In clas-
sical mechanics, the dispersion relation for a free particle is found to be given
by

E = ±
√
m2 c4 + p2 c2 (2058)

The negative-energy states found in classical mechanics can be safely ignored.
The rational for ignoring the negative-energy states in classical mechanics is
that, the dynamics is governed by a set of differential equations which result
in the classical variables changing in a continuous fashion. Since the particle’s
energy can only change in a continuous fashion, there is no mechanism which al-
lows it to connect with the negative branch of the dispersion relation. However,
in quantum mechanics, particles can make discontinuous transitions between
different energy levels, by emitting photons. Hence, if one has a single electron
in a positive-energy state where E > m c2, this state would be unstable to
the electron making a transition to a negative-energy state which occurs with
the simultaneous emission of photons which carry away an energy greater than
2 m c2. The transition rate for such process is quite large, therefore, one might
conclude that positive-energy particles should not exist in nature. Furthermore,
if one does have particles in the negative-energy branch, they might be able to
further lower their energies by multiple photon emission processes. Hence, the
states of negative-energy particles with finite momenta could be unstable to
states in which the momentum has an infinite value.

Dirac noted that if the negative-energy states were all filled, then the Pauli
exclusion principle would prevent the decay of positive-energy particles into
the negative-energy states. Furthermore, in the absence of any positive-energy
particles, the Pauli exclusion principle would cause the set of particles in the
negative-energy state to be completely inert. In this picture, the filled sea
of negative-energy states would represent the physical vacuum, and would be
unobservable in experiments. For example, if charge is measured, it is the
non-uniform part of the charge distribution that is measured, but the infinite
number of particles in the negative-energy states do produce a uniform charge
density. Likewise, when energies are measured, the energy is usually measured
with respect to some reference level. For the case of a vacuum in which all
the negative-energy states are filled with electrons, the measured energies cor-
respond to energy differences and so the infinite negative energy of the vacuum
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Figure 66: A cartoon depicting the vacuum for Dirac’s Hole Theory, in which
the negative-energy states are filled and the positive-energy states are empty.

should cancel. Therefore, Dirac postulated that the vacuum consists of the
state in which all the negative-energy states are all filled with electrons142. Fur-
thermore, physical states correspond to the states were a relatively few of the
positive-energy states are filled with electrons and a few negative states are un-
occupied. In this case, the electrons in the positive-energy states are identified
with observable electrons, and the unfilled states or holes in the distribution of
negative-energy states are also observable. These holes are known as positrons
and are the anti-particles of the electrons. The properties of a positron are
found by computing the difference between the property for a state with an
absent negative-energy electron and the property of the vacuum state.

We shall assume that the vacuum contains of N electrons which completely
fill all the N negative states and, for simplicity of discussion, the effect of cou-
pling to the electromagnetic field can be ignored. Then the charge of a positron
qp is the difference between the charge of the vacuum with one missing electron,
and the charge of the vacuum

qp = ( N − 1 ) qe − N qe (2059)

Therefore, one finds that the positron has the opposite charge to that of an
electron

qp = − qe (2060)

142P. A. M. Dirac, Proc. Roy. Soc. A 126, 360 (1930).
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Hence, the positron has a positive charge. Likewise, the energy of the vacuum
in which all the electrons occupy all the negative-energy states is denoted by
E0. The positron energy will be denoted as Ep(pe). The positron corresponds
all states with negative energy being filled except for the state with the energy

Ee(pe) = −
√
m2 c4 + p2

e c
4 (2061)

which is unfilled. The positron energy is defined as the energy difference

Ep(pp) =

(
E0 − Ee(pe)

)
− E0

= − Ee(pe)

=
√
m2 c4 + p2

e c
4 (2062)

Therefore, the positron corresponds to a particle with a positive energy. From
this it is seen that the rest mass energy of the positron is identical to the
rest mass energy of the electron. If the vacuum corresponds to a state with
momentum P 0 and if the negative-energy state with momentum p

e
is unfilled,

then the momentum of the positron would be given by p
p

where

p
p

=

(
P 0 − p

e

)
− P 0

= − p
e

(2063)

Hence, the momentum of the positron is the negative of the momentum of the
missing electron

p
p

= − p
e

(2064)

Likewise, the spin of the positron is opposite to the spin of the missing electron,
etc. The velocity of an electron is defined as the group velocity of a wave packet
of momentum p

e
. Hence, one finds the velocity of the negative energy-electron

from

ve =
∂

∂p
e

Ee(pe)

= −
p
e
c2

√
m2 c4 + p2

e
c2

(2065)

while the velocity of the positron is given by

vp =
∂

∂p
p

Ep(pp)

=
p
p
c2

√
m2 c4 + p2

p
c2
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Table 18: The relation between properties of Negative Energy Electron and
Positron States.

Particle Charge Energy Momentum Spin Helicity Velocity

Electron − | e | − | E | + p + h̄
2 σ σ . p v

Positron + | e | + | E | − p − h̄
2 σ σ . p v

= −
p
e
c2

√
m2 c4 + p2

e
c2

= ve (2066)

Therefore, the positron and the negative-energy electron states have the same
velocities.

Hole theory provides a simple description of the relation between a negative-
energy state and anti-particle states. Mathematically, this relation is expressed
in terms of the charge conjugation transformation. A unique signature of the
hole theory is that a positive-energy electron can make a transition to an unfilled
negative-energy state emitting radiation, which corresponds to the process in
which a electron-positron pair annihilates143

e + e → 2 γ (2067)

In this process, it is necessary that the excess energy be carried off by two
photons if the energy-momentum conservation laws are to be satisfied. Likewise,
by supplying an energy greater than a threshold energy of 2 m c2, it should be
possible to promote an electron from a negative-energy state, thereby creating
an electron-positron pair. Since it is unlikely that more than one photon can
be absorbed simultaneously, electron-positron pair creation only occurs in the
vicinity of a charged nucleus which can carry off any excess momentum.

γ → e + e (2068)

The positively charged electron, predicted by Dirac, was found experimentally

143P. A. M. Dirac, Proc. Camb. Phil. Soc. 26, 361 (1930).
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Figure 67: A cartoon depicting electron-positron production in Dirac’s Hole
Theory. In this case, an incident γ-ray produces an electron-hole pair. The
process is restricted to occur in the vicinity of heavy particles that can act as a
momentum sinks.

by Anderson144 and the electron-positron creation145 and annihilation pro-
cesses146 were observed shortly afterwards.

Dirac commented147 that in scattering processes involving low-energy elec-
trons, such as Thomson scattering, it is essential that negative-energy states
appear as virtual states, if one is to recover the correct scattering cross-section
in the non-relativistic limit. The involvement of negative-energy states in the
scattering of light is a consequence that, in the standard representation, the
lower two-component spinor in the Dirac wave function for a free (positive-
energy) electron vanishes in the low energy limit, and also because the coupling

144C. D. Anderson, Phys. Rev. 43, 491 (1933). Anderson observed the curved trajectories
of the charged particles in a cloud chamber in the presence of a magnetic field. Anderson
inferred the charge of the particles from their direction of motion. The insertion of a lead
plate in a cloud chamber caused the particles to lose energy on one side of the plate which
was observed as a change in the radius of curvature of the particle’s track. Therefore, the
examination of the radius of curvature of the track on both sides of the plate allowed the
direction of motion to be established.
145P. M. S. Blackett and G. P. S. Occhialini, Proc. Roy. Soc. A 139, 688 (1933). These

authors were the first who correctly identified the positively charged particle as the anti-
particle of the electron, in full accord with the predictions of Dirac’s hole theory.
146J. Thibaud, Phys. Rev, 35, 78 (1934).
147P. A. M. Dirac, Proc. Roy. Soc. A126, 360 (1930).
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to the radiation field is produced by γ(0) γ . A. The interaction operator can
be expressed as

ĤInt = − q α . A = − q

(
0 σ
σ 0

)
. A (2069)

which only connects the upper and lower two-component spinors of the initial
and final states ψn and ψn′ . Hence, as light scattering processes are at least of
second-order in A, the intermediate state ψn′′ must involve a negative-energy
electron state. Since the Pauli exclusion principle forbids the occupation of
the filled negative-energy states, hole theory ascribes the intermediate states
as involving virtual electron-positron creation and annihilation processes. This
shows that, even for processes which appear to involve a single electron in the
initial and final states, one must abandon single-particle quantum mechanics
and adopt a multi-particle description. Therefore, a purely single-particle de-
scription is inadequate and one must consider a many-particle description such
as quantum field theory.

12.16.1 Compton Scattering

We shall consider Thomson scattering of light by free electrons. In this process,
light is scattered from the initial state (k, α) to the final state (k, α) and the
(positive-energy) electron makes a transition from the initial state (q, σ) to its
final (positive-energy) state (q′, σ′). The Thomson scattering cross-section of
light is given by the expression

(
dσ

dΩk′

)
=

(
V ωk′

2 π h̄ c2

)2

| M |2 (2070)

where the matrix element M are determined from

M =
∑

q′′

[
< q′, k′, α′ | ĤInt | q′′ > < q′′ | ĤInt| q, k, α >

( Eq + h̄ ωk − Eq′′ )

+
< q′, k′, α′ | ĤInt | q′′, k, α, k′, α′ > < q′′, k, α, k′, α′ | ĤInt | q, k, α >

( Eq − Eq′′ − h̄ ωk′ )

]

(2071)

and where q indicates all the quantum numbers of a positive-energy free electron
state. The sum over q′′ represents a sum over all possible intermediate states
of the electron, no matter whether they are positive or negative-energy states.
The matrix element M is composed of a coherent superposition of matrix el-
ements for virtual processes which represent the absorption of a photon (k, α)
followed by the subsequent emission of a photon (k′, α′) and the process where
the emission of light precedes the absorption process.
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Figure 68: Processes involving negative electron states q′′ which contribute to
Compton scattering.

Since the basis set is composed of momentum eigenstates, the evaluation
of the spatial integration in the matrix elements of the interaction results in
the condition of conservation of momentum. Hence, for the process where the
photon (k, α) is absorbed before the emission of the photon (k′, α′), the momenta
are restricted by

k + q = q′′

q′′ = k′ + q′ (2072)

which leads to the identification of the momentum of the intermediate and final
states as

q′′ = q + k

q′ = q + k − k′ (2073)

In the second process, where the emission process precedes the absorption, con-
servation of momentum yields

k + q = k + k′ + q′′

k + k′ + q′′ = k′ + q′ (2074)

which yields

q′′ = q − k′

q′ = q + k − k′ (2075)

The limit in which the initial electron is at rest q = 0 shall be considered. The
momenta of the incident and scattered photon will be assumed sufficiently low
so that the momentum of the electron in the intermediate state can be neglected
since q′′ ≈ 0. That is, the Compton scattering process will be consider in the
limit k → 0 and k′ → 0.
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If the initial (positive-energy) electron is stationary and has spin σ, its wave
function can be represented by the Dirac spinor

ψσ,q(r) =
1√
V

(
χσ
0

)
(2076)

Because the interaction Hamiltonian has the form of an off-diagonal 2× 2 block
matrix

ĤInt = − q

c

(
0 σ
σ 0

)
. A (2077)

the only non-zero matrix elements are those which connect the upper two-
component spinor to the lower two-component spinor of the virtual state. Also,
momentum conservation requires that the virtual state also be one of almost
zero momentum. Hence, the electron in the virtual state must have the form of
a negative-energy eigenstate

ψσ′′,q′′(r) ≈ 1√
V

(
0

χσ′′

)
(2078)

since the contribution from a positive-energy state with small momentum is
negligibly small. Therefore, the electronic part of the matrix elements involving
the initial electron simply reduce to the expression

< ψσ′′,q′′ | ĤInt | ψσ,q > = | e | χ†
σ′′ σ χσ . A (2079)

Likewise, the matrix elements which involve the final (positive energy) electron
are evaluated as

< ψσ′,q′ | ĤInt | ψσ′′,q′′ > = | e | χ†
σ′ σ χσ′′ . A (2080)

From these one finds that, to second-order, the matrix elements that appear in
the transition rate are given by

M = e2
(

2 π h̄ c2

V
√
ωk ωk′

) ∑

σ′′

[
( χ†

σ′ σ . ǫα′(k′) χσ′′ ) ( χ†
σ′′ σ . ǫα(k) χσ )

Eq − Eq′′ + h̄ ωk

+
( χ†

σ′ σ . ǫα(k) χσ′′ ) ( χ†
σ′′ σ . ǫα′(k′) χσ )

Eq − Eq′′ − h̄ ωk′

]

≈
(

e2

2 m c2

) (
2 π h̄ c2

V
√
ωk ωk′

) ∑

σ′′

[
( χ†

σ′ σ . ǫα′(k′) χσ′′ ) ( χ†
σ′′ σ . ǫα(k) χσ )

+ ( χ†
σ′ σ . ǫα(k) χσ′′ ) ( χ†

σ′′ σ . ǫα′(k′) χσ )

]
(2081)

where one has set
Eq − Eq′′ ≈ 2 m c2 (2082)

On using the completeness relation for the two-component Dirac spinors
∑

σ′′

χσ′′ χ†
σ′′ = I (2083)
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the matrix elements are evaluated as

M ≈
(

e2

2 m c2

) (
2 π h̄ c2

V
√
ωk ωk′

)
χ†
σ′

[
( σ . ǫ̂α(k) ) ( σ . ǫ̂α′(k′) ) + ( σ . ǫ̂α′(k′) ) ( σ . ǫ̂α(k) )

]
χσ

(2084)
The products in the above expression can be evaluated with the aid of the Pauli
identity. The result is

( σ . ǫ̂α(k) ) ( σ . ǫ̂α′(k′) ) = ( ǫ̂α(k) . ǫ̂α′(k′) ) + i σ . ( ǫ̂α(k) ∧ ǫ̂α′(k′) ) (2085)

Therefore, after combining both terms and noting that the pair of vector product
terms cancel since the vector product is antisymmetric under the interchange
k ↔ k′, one finds that the matrix elements reduce to

M ≈
(

e2

2 m c2

) (
2 π h̄ c2

V
√
ωk ωk′

)
χ†
σ′

[
2 ǫ̂α(k) . ǫ̂α′(k′)

]
χσ

M ≈
(

e2

2 m c2

) (
2 π h̄ c2

V
√
ωk ωk′

)
δσ,σ′ 2 ǫ̂α(k) . ǫ̂α′(k′) (2086)

Hence the matrix elements are diagonal in the spin indices. The above matrix
elements are identical to the matrix elements that occur in the non-relativistic
quantum theory of Thomson scattering. On substituting this result into eqn(2070),
one recovers the non-relativistic expression for the differential scattering cross-
section

(
dσ

dΩk′

)
≈ δσ,σ′

(
ωk′

ωk

) (
e2

m c2

)2

| ǫ̂α(k) . ǫ̂α′(k′) |2

≈ δσ,σ′

(
ωk′

ωk

) (
e2

m c2

)2

cos2 Θ (2087)

where
cos Θ = ǫ̂α(k) . ǫ̂α′(k′) (2088)

is the angle subtended by the initial and final polarization vectors. Hence, one
concludes that the negative-energy states do play an important role in light
scattering processes which involve low-energy electrons. The result, although
correct, does need re-interpretation, since the states of negative energy are as-
sumed to be filled with electrons in the vacuum and, therefore, the electron is
forbidden to occupy these levels in the intermediate states.

Electron-Positron Interpretation

The first contribution to the matrix elements, which was described above,
has to be re-interpreted as representing a process in which an electron that
initially occupies the negative-energy state q′′ makes a transition to the positive-

energy state q′ while emitting the photon (k′, α′). This transition is subsequently
followed by the positive-energy electron q absorbing the photon (k, α) and falling
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Figure 69: Processes involving positrons which contribute to Compton scatter-
ing.

into the empty negative-energy state. In this process, the negative-energy states
are completely occupied in the initial and final state, and the energy of the initial
and final states are conserved. By re-ordering the factors in the matrix elements
and noting that since

Eq + h̄ ωk = Eq′ + h̄ ωk′ (2089)

the contribution to the matrix element of these two descriptions are identical
(apart from an over all negative sign).

The second contribution to the matrix elements can be viewed as originating
from an electron which initially occupies a negative-energy state q′′ that absorbs
the photon (k, α) and makes a transition to the positive-energy state q′. This
is followed by the electron in the positive-energy state q emitting the photon

(k′, α′) and then falling into the empty negative-energy state q′′. Again, on
re-ordering the matrix elements and noting that

Eq − h̄ ωk′ = Eq′ − h̄ ωk (2090)

one finds an identical expression (and the multiplicative factor of minus one).
Hence, Dirac hole-theory does lead to the correct classical result.

The above description is quite cumbersome, but can be made more concise by
adopting an anti-particle description of the unoccupied negative-energy states.
The first contribution to M first involves the creation of a virtual electron-
positron pair with the emission of the photon (k′, α′). The electron which has
just been created in the momentum eigenstate (q′, σ′) remains unchanged in
the final state. Subsequently, the positron annihilates with the initial electron
(q, σ) while absorbing the photon (k, α). Since the intermediate state is a vir-
tual state, energy does not have to be conserved. The second contribution to M
involves the creation of a virtual electron-positron pair with the absorption of
the photon (k, α). The created electron (q′, σ′) remains in the final state while
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the positron subsequently annihilates with the initial electron (q, σ) and emits

the photon (k′, α′). This process is also a virtual process if the energy of the
incident light h̄ ωk is less than 2 m c2.

The perturbative expression for the Compton scattering cross-section can
be evaluated exactly, without recourse to non-relativistic approximations. The
exact result is

(
dσ

dΩ

)
=

1

4
r2e

(
ω′

ω

)2 (
ω

ω′ +
ω′

ω
− 2 + 4 cos2 Θ

)
(2091)

where Θ is the angle between the polarization vectors. This result was first
derived by Klein and Nishina148 in 1928.

12.16.2 Charge Conjugation

Charge conjugation is the operation of replacing matter by anti-matter, so that,
for example, electrons will be replaced by positrons and vice versa. The opera-
tion of charge conjugation consists of first taking the complex conjugate of the
Dirac equation

[
γµ ( i h̄ ∂µ − q

c
Aµ ) − m c

]
ψ = 0 (2092)

which describes a particle with charge q. We shall also assume that ψ describes
a positive-energy solution. Complex conjugation yields the equation

[
γµ∗ ( − i h̄ ∂µ − q

c
A∗
µ ) − m c

]
ψ∗ = 0 (2093)

The complex conjugate of a positive-energy solution ψ∗ has a time-dependent
phase that identifies it with a negative-energy solution. The vector potential
Aµ is real. In the standard representation γ(0), γ(1) and γ(3) are real, whereas
γ(2) is imaginary and, therefore, satisfies

γ(2)∗ = − γ(2) (2094)

We shall multiply the complex conjugate of the Dirac equation by γ(2) and anti-
commute γ(2) with the real γµ∗ and commute γ(2) with the γ(2)∗ matrix. This
procedure changes the sign in front of the term originating from the differential
momentum operator w.r.t. the sign of the mass term. This procedure yields

γ(2)

[
γµ∗ ( − i h̄ ∂µ − q

c
Aµ ) − m c

]
ψ∗ = 0

[
γµ ( i h̄ ∂µ +

q

c
Aµ ) − m c

]
γ(2) ψ∗ = 0 (2095)

148O. Klein and Y. Nishina, Zeit. für Physik, 52, 843 (1928).
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Hence, one sees that γ(2)ψ∗ describes a Dirac particle with mass m and a charge
of − q moving in the presence of a vector potential Aµ. The fact that the opera-
tion of charge conjugation (in any representation) involves complex conjugation
is related to gauge invariance. Charge conjugation is a new type of symmetry for
particles that have complex wave functions which relates particles to particles
with opposite charges. The charge conjugate field ψc is defined as

ψc = Ĉ ψ∗ (2096)

which is the result of the complex conjugation followed by the action of a linear
operator Ĉ. The joint operation can be represented as an anti-unitary operator.
The charge conjugation operator Ĉ is defined as the unitary and Hermitean
operator

Ĉ = − i γ(2) (2097)

The charge conjugation operator is Hermitean as

Ĉ† = + i γ(2)† = − i γ(2) = Ĉ (2098)

and it is unitary since

Ĉ† Ĉ = − γ(2) γ(2) = Î (2099)

where the anti-commutation relations of the γ matrices have been used. It was
through this type of logic that Kramers149 discovered the form of the charge
conjugation transformation which turns a particle into an anti-particle.

The expectation values of an operator Â in a general charge conjugated state
ψc are related to the expectation values in a general state ψ via

< ψc | Â | ψc > = −
(

< ψ | γ(2) Â∗ γ(2) | ψ >

)∗
(2100)

This can be shown in the position representation, by writing
∫

d3r ψc†(r) Â ψc(r) =

∫
d3r ψ∗†(r) Ĉ† Â Ĉ ψ∗(r)

=

( ∫
d3r ψ†(r) Ĉ†∗ Â∗ Ĉ∗ ψ(r)

)∗
(2101)

where we have used the identity z = (z∗)∗ in the second line. However, since Ĉ
is real, one finds

∫
d3r ψc†(r) Â ψc(r) =

( ∫
d3r ψ†(r) Ĉ Â∗ Ĉ ψ(r)

)∗

= −
( ∫

d3r ψ†(r) γ(2) Â∗ γ(2) ψ(r)

)∗

(2102)

149H. A. Kramers, Proc. Amst. Akad. Sci. 40, 814 (1937).
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This shows the relation between expectation values of a general operator Â in
a state ψ(r) and its charge conjugated state ψc(r).

We shall examine the effect of charge conjugation on the plane wave solutions
of the Dirac equation. The plane-wave solutions can be written as

ψσ,k(x) =

√
( E + m c2 )

2 E V

(
χσ

c h̄ σ . k

E + m c2
χσ

)
exp

[
− i kµ xµ

]
(2103)

The charge conjugate wave function is given by

ψcσ,k(x) = Ĉ ψ∗
σ,k(x)

=

√
( E + m c2 )

2 E V
Ĉ

(
χ∗
σ

c h̄ σ∗ . k

E + m c2
χ∗
σ

)
exp

[
+ i kµ xµ

]

(2104)

where

Ĉ = − i γ(2)

=

(
0 −iσ(2)

iσ(2) 0

)

=




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0


 (2105)

Therefore, the charge conjugate wave function is found to be given by

ψcσ,k(x) = i σ̂(2)

√
( E + m c2 )

2 E V

(
− c h̄ σ∗ . k

E + m c2
χ∗
σ

χ∗
σ

)
exp

[
+ i kµ xµ

]

(2106)
which has the form of a plane-wave solution with negative energy E → − E,
and momentum h̄ k → − h̄ k. Furthermore, the spin of the charge conjugated
wave function has been reversed150 σ → − σ, since when i σ(2) acts on the
complex conjugated positive-eigenvalue eigenstate of the spin projected on an
arbitrary direction

χ+σ(θ, ϕ)∗ =

(
cos θ2 exp[+iϕ2 ]
sin θ

2 exp[−iϕ2 ]

)
(2107)

150Note that the helicity is invariant under the joint transformation

σ → − σ

k → − k
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it turns it into the negative-eigenvalue eigenstate

χ−σ(θ, ϕ) =

(
− sin θ

2 exp[−iϕ2 ]
cos θ2 exp[+iϕ2 ]

)
(2108)

That is, up to an arbitrary phase factor, the lower two-component spinor is
given by

i σ(2) χ+σ(θ, ϕ)∗ = χ−σ(θ, ϕ) (2109)

Likewise, it can be shown that the upper two-component spinor is proportional
to

i σ(2) ( σ∗ . k ) χ+σ(θ, ϕ)∗ = − ( σ . k ) ( i σ(2) ) χ+σ(θ, ϕ)∗

= − ( σ . k ) χ−σ(θ, ϕ)

= ( σ . ( − k ) ) χ−σ(θ, ϕ) (2110)

The end result is that the charge conjugated single-particle wave function has
the form

ψcσ,k(x) =

√
( E + m c2 )

2 E V

(
− c h̄ ( σ . (−k) )

E + m c2
χ−σ

χ−σ

)
exp

[
+ i kµ xµ

]

(2111)
The properties described above are the properties of a state of a relativistic free
particle with a negative energy eigenvalue − E, momentum − h̄ k and spin − σ.
The absence of an electron in the charge conjugated state describes a positron,
with positive energy E, momentum h̄ k and spin σ.

More generally, even when an electromagnetic field is present, the charge
conjugated wave function of a positive-energy particle corresponds to the wave
function of a state with reversed energy E → − E, reversed spin σ → − σ
and reversed charge q → − q. Therefore, the charge conjugated state corre-
sponds to the (negative-energy) state which when unoccupied is described as an
anti-particle.

Exercise:

Consider massless Dirac particles, m→ 0. (i) Show that the energy-helicity
eigenstates coincide with the eigenstates of γ(4). (ii) Hence, show that the oper-
ators 1

2 ( Î ± γ(4) ) project onto helicity eigenstates. These projection operators
relate the four-component Dirac spinors onto the independent two-component
Weyl spinors φL and φR. (iii) Show that charge conjugation transforms φL into
φR.

Exercise:

372



Prove the completeness relation for the set of solutions for the Dirac equation
for a free particle

∑

α

(
φ†α(r)λ φα(r′)ρ + φcα

†(r)λ φ
c
α(r′)ρ

)
= δ3(r − r′) δλ,ρ (2112)

where λ and ρ denote the components of the Dirac spinor151.

13 Local and Global Gauge Symmetries

Global transformations are defined to be transformations which are the same
at every point in space-time, whereas local transformations vary from point to
point. Global symmetries, such as invariance under rotation, spatial translation,
and time translations, lead to laws of physics such as conservation of angular
momentum, linear momentum and energy. Local transformations do not lead
to new physical laws, but do lead to constraints on the form of the interactions.

A familiar example of a local transformation is the gauge transformation
in Quantum Electrodynamics. The Lagrangian density for Quantum Electro-
dynamics LQED given by the sum of the field-free electrodynamic Lagrangian
density and the Dirac Lagrangian density

LQED = − 1

16 π
Fµ,ν Fµ,ν + c ψ

†
(
γµ ( p̂µ − q

c
Aµ )− m c

)
ψ (2113)

The role of the source term for the electromagnetic field is played by the term
in the Dirac Lagrangian which represents the coupling to the vector potential.
The expression for the QED action

SQED =

∫
dx4 LQED (2114)

is invariant under an infinite number of infinitesimal gauge transformations with
the form

Aµ → A′
µ = Aµ + ∂µ Λ

ψ → ψ′ = ψ −
(
i q

h̄ c

)
Λ ψ

ψ† → ψ†′ = ψ† +

(
i q

h̄ c

)
Λ ψ† (2115)

151Frequently, the relativistic free electron states are given a manifestly covariant normaliza-
tion, in order to facilitate covariant perturbation theory. The use of different normalization
conventions results in changes the form of the completeness relation.
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Applying Noether’s theorem to the action yields an infinite number of continuous
currents, which, up to a multiplicative factor, are given by

jνΛ =

(
∂LQED
∂ (∂νAµ)

)
∂µ Λ −

(
∂LQED
∂ (∂νψ)

) (
i q

h̄ c

)
Λ ψ (2116)

which satisfy the continuity conditions

∂ν j
ν
Λ = 0 (2117)

The currents are identified as

jνΛ =
1

4 π
Fµ,ν ∂µ Λ + q ψ

†
γν Λ ψ (2118)

On substituting the Euler-Lagrange equation for the electromagnetic field

∂µ F
µ,ν =

4 π

c
q c ψ

†
γν ψ (2119)

into the second term of the four-vector current density, one finds that the con-
tinuous current has the form

jνΛ =
1

4 π
∂µ

(
Fµ,ν Λ

)
(2120)

The conserved charge Q can be defined as a volume integral of the temporal
component of the four-vector current density

QΛ =
1

c

∫
d3r j

(0)
Λ (r)

=
1

4 π c

∫
d3r ∂µ

(
Fµ,0 Λ

)

=
1

4 π c

∫
d3r ∇ . ( E Λ ) (2121)

For a global transformation for which Λ is constant over all space-time, one can
write

QΛ=const. =
Λ

4 π c

∫
d3r ( ∇ . E ) (2122)

On using Gauss’s law
∇ . E = 4 π ρ (2123)

one finds that global gauge invariance ensures conservation of electrical charge

QΛ=const. =
Λ

c

∫
d3r ρ(r) (2124)

However, for any of the infinite number of spatially varying Λ which vanish on
the boundaries

QΛ =
1

4 π c

∫
d3r ∇ . ( E Λ )

=
1

4 π c

∫
d2S . E Λ

= 0 (2125)
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Hence, although local transformations lead to an infinite number of symmetries
and an infinite number of continuous currents, all the conserved charges are
zero. Thus, local gauge invariance does not leads to new conserved quantities.
It does, however, constrain the form of the interactions.

14 The Many-Particle Dirac Field

14.1 The Algebra of Fermion Operators

Second quantization of fermions amounts to adopting an occupation number
representation. Therefore, we shall examine No. accounting for fermions152.

Fermion operators satisfy anti-commutation relations. The anti-commutator
of two operators Â and B̂ is defined as

{ Â , B̂ }+ ≡ Â B̂ + B̂ Â (2126)

The fermion creation and annihilation operators, ĉ†α and ĉα, satisfy the anti-
commutation relations

{ ĉ†α , ĉ†β }+ = 0

{ ĉα , ĉβ }+ = 0 (2127)

and
{ ĉ†α , ĉβ }+ = δα,β (2128)

where the quantum numbers α and β describe a complete set of single-particle
states.

The anti-commutation relation

ĉ†α ĉ
†
β = − ĉ†β ĉ

†
α (2129)

is merely a re-statement of the anti-symmetric nature of a fermionic many-
particle wave function under the permutation of a pair of particles, as is the
Hermitean conjugate relation

ĉα ĉβ = − ĉβ ĉα (2130)

The number operator n̂α is defined as

n̂α = ĉ†α ĉα (2131)

152P. Jordan and E. Wigner, Zeit. für Physik, 47, 631 (1928).
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The choice of anti-commutation relations results in the eigenvalues of the num-
ber operator to be restricted to either nα = 1 or nα = 0. This can be seen by
examining the identity

n̂α n̂α = n̂α (2132)

which follows from

n̂α n̂α = ĉ†α ĉα ĉ
†
α ĉα

= ĉ†α ĉα − ĉ†α ĉ
†
α ĉα ĉα

= ĉ†α ĉα + ĉ†α ĉ
†
α ĉα ĉα (2133)

where we have used the anti-commutation relation for the creation and annihila-
tion operator to obtain the second line and used the anti-commutation relation
for two annihilation operators to obtain the last line. On comparing the second
and third lines, one recognizes that

ĉ†α ĉ
†
α ĉα ĉα = 0 (2134)

Hence, we have

n̂α n̂α = ĉ†α ĉα

= n̂α (2135)

Thus, the eigenstates of the number operator satisfy the equation

n̂α n̂α | nα > = n̂α | nα >

n2
α | nα > = nα | nα > (2136)

Therefore, for there to be non-trivial eigenstates the eigenvalues must satisfy
the equation

nα ( nα − 1 ) = 0 (2137)

which only has the solutions nα = 0 and nα = 1. Thus the choice of anti-
commutation relations for the creation and annihilation operators results in
the Pauli exclusion principle. The Pauli exclusion principle states that a non-
degenerate quantum state can not be occupied by more than one fermion.

The number operator satisfies the commutation relations

[ n̂α , ĉ
†
β ] = δα,β ĉ

†
β

[ n̂α , ĉβ ] = − δα,β ĉβ (2138)

as can be seen by using the fermion anti-commutation relations. The hierarchy
of eigenstates of the number operator can be found from the action of the
creation operator. In particular, one can define the eigenstate of the annihilation
operator with eigenvalue zero by

ĉα | 0 > = 0 (2139)
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The state | 0 > is also an eigenstate of the number operator with eigenvalue
zero since

n̂α | 0 > = ĉ†α ĉα | 0 >

= 0 (2140)

A general eigenstate of the number operator with eigenvalue nα can be expressed
as

| nα > =
( ĉ†α )nα

√
nα!

| 0 > (2141)

as can be seen by using the commutation relation

[ n̂α , ( ĉ†α )nα ] = nα ( ĉ†α )nα (2142)

If this operator equation acts on the state where the quantum state α is unoc-
cupied | 0 >, and using the condition

n̂α | 0 > = 0 (2143)

one finds the state of equation(2140) satisfies the eigenvalue equation

n̂α | nα > = nα | nα > (2144)

with eigenvalue of either unity or zero.

A general number operator eigenstate can be expressed in terms of the oc-
cupation numbers of all the single-particle states

| {nα} > =

∞∏

α=1

{
( ĉ†α )nα

√
nα!

}
| 0 , 0 , 0 , . . . , 0 > (2145)

where the allowed values of the set of occupation numbers nα are either unity
or zero. The sequencing or ordering of the creation operators in this expression
is crucial, since the interchange the positions of the operators may result in a
change in sign of the state. For example, the action of a creation operators on
a general number eigenstate has the effect

ĉ†β | n1 n2 . . . nβ . . . > = ( − 1 )(
∑

β

i=1
ni) | n1 n2 . . . nβ + 1 . . . > (2146)

where the sign occurs since this involves anti-commutating ĉ†β with
∑β
i=1 ni

other creation operators to bring it into the β-th position.

14.2 Quantizing the Dirac Field

The quantization of the Dirac field proceeds exactly the same way as for non-
relativistic electrons153. However, the negative-energy states will be described

153W. Heisenberg and W. Pauli, Zeit. für Physik, 56, 1 (1929).
W. Heisenberg and W. Pauli, Zeit. für Physik, 59, 168 (1930).
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with a different notation from the positive-energy states. The change of no-
tation is to reflect the intent of describing the (quasi-particle) excitations of
the system and not to describe the many-particle ground state which is unob-
servable. The wave functions φα(r) describing the positive-energy states of the
non-interacting electrons are indexed by the set of quantum numbers α ≡ (k, σ).
The negative-energy states are described as the charge conjugates of the positive-
energy states. Therefore, the negative-energy states are described by the same
set of indices α and the corresponding wave functions are denoted by φcα(r).
The annihilation operator for electrons in the positive-energy state α is denoted
by ĉα. However, the operator which removes an electron from the (negative-

energy) charge conjugated state φcα(r) is denoted by a creation operator b̂†α. The
change from annihilation operator to creation operator merely represents that
creating a positron with quantum numbers α is equivalent to creating a hole in
the negative-energy state154. The effect of the annihilation operators on Dirac’s
vacuum | 0 >, in which all the negative-energy states are fully occupied are

ĉα | 0 > = 0

b̂α | 0 > = 0 (2147)

where the first expression follows from the assumed absence of electrons in the
positive-energy states, and the second expression follows from the assumption
that all the negative-energy states are completely filled, so adding an extra elec-
tron to the state φcα is forbidden by the Pauli-exclusion principle. More concisely,
the above relations state that the vacuum contains neither (positive-energy)
electrons nor positrons. It is seen that the form of the anti-commutation rela-
tions are unchanged by this simple change of notation. The anti-commutation
relations become

{ ĉ†α , ĉ†β }+ = { ĉα , ĉβ }+ = 0

{ ĉ†α , ĉβ }+ = δα,β (2148)

for the electron operators

{ b̂†α , b̂†β }+ = { b̂α , b̂β }+ = 0

{ b̂†α , b̂β }+ = δα,β (2149)

for the positron operators, and the mixed electron/positron anti-commutation
relations are given by

{ ĉ†α , b̂†β }+ = { ĉα , b̂β }+ = { ĉ†α , b̂β }+ = 0 (2150)

The mixed electron/positron anti-commutation relations are all zero, since the
operators describe electrons in different single-particle energy eigenstates. In

154W. H. Furry and J. R. Oppenheimer, Phys. Rev. 45, 245 (1934).
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this notation, the field operators are expressed as155

ψ̂(r) =
∑

α

(
φα(r) ĉα + φcα(r) b̂†α

)
(2151)

and

ψ̂†(r) =
∑

α

(
φ∗α(r) ĉ†α + φcα

∗(r) b̂α

)
(2152)

The field operators ψ̂(r) and ψ̂†(r) are expected to be canonically conjugate, as
we shall show below.

The Lagrangian density is given by

L = c ψ̂
† (

i h̄ γµ ∂µ − m c

)
ψ̂ (2153)

so the momentum field operator Π̂(r) canonically conjugate to ψ̂(r) is given by

Π̂(r) =
1

c

δL
δ(∂0ψ̂)

= i h̄ ψ̂
†
(r) γ(0) = i h̄ ψ̂†(r) (2154)

Hence, one expects that the field operators ψ̂†(r) and ψ̂(r) are canonically con-
jugate and, therefore, satisfy the equal-time anti-commutation relations

{ ψ̂†(r)λ , ψ̂(r′)ρ }+ = δ3(r − r′) δλ,ρ (2155)

where λ and ρ label the components of the Dirac spinor. The anti-commutation
relations for the field operators can be verified by noting that

{ ψ̂†(r) , ψ̂(r′) }+ =
∑

α,β

(
{ ĉ†α , ĉβ }+ φ∗α(r) φβ(r

′) + { ĉ†α , b̂†β }+ φ∗α(r) φcβ(r
′)

+ { b̂α , ĉβ }+ φcα
∗(r) φβ(r

′) + { b̂α , b̂†β }+ φcα
∗(r) φcβ(r

′)

)

=
∑

α,β

(
δα,β φ

∗
α(r) φβ(r

′) + δα,β φ
c
α
∗(r) φcβ(r

′)

)

=
∑

α

(
φ∗α(r) φα(r′) + φcα

∗(r) φcα(r′)

)

= δ3(r − r′) (2156)

where the fermion anti-commutation relations have been used in arriving at the
second line. The positive-energy states and their charge conjugated states form
a complete set of basis states for the single-particle Dirac equation, so their

155W. Heisenberg and W. Pauli, Zeit. für Physik, 56, 1 (1929).
W. Heisenberg and W. Pauli, Zeit. für Physik, 59, 168 (1930).
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completeness condition has been used in going from the third to the fourth line.
The equal-time field anti-commutation relations can be generalized to field anti-
commutators at space-time points with a general type of separation. In the case
where the two field points x and x′ have a space-like separation

( xµ − x′
µ

) ( xµ − x′µ ) < 0

causality dictates that the anti-commutators are zero

{ ψ̂†(x) , ψ̂(x′) }+ = 0

That is, for space-like separations, there is no causal connection156 so a mea-
surement of a local field at x′ cannot affect a measurement at x. N. Bohr and

r

c
 t ∆x

2
 > 0

∆x
2
 < 0

Figure 70: Due to causality, the anti-commutator of the field operator should
vanish for space-like separations. The anti-commutators can be non-zero inside
or on the light cone.

L. Rosenfeld157 have put forward general arguments that the commutation rela-
tions also place limitations on the measurement of fields at time-like separations.

The Hamiltonian density for the (non-interacting) quantized Dirac field the-
ory can be expressed as the operator

Ĥ = ψ̂† γ(0) c

(
− i h̄ γ . ∇ + m c

)
ψ̂ (2157)

and the Hamiltonian operator is given by

Ĥ =

∫
d3r Ĥ (2158)

When the expansion of the quantized field in terms of single-particle wave func-
tions is substituted into the Hamiltonian, one finds

Ĥ =
∑

α

(
Eα ĉ

†
α ĉα + Ecα b̂α b̂

†
α

)

156Outside the light-cone there is no way to distinguish between future and past.
157N. Bohr and L. Rosenfeld, Kon. Dansk. Vid. Selskab., Mat.-Fys. Medd. XII, 8 (1933).
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=
∑

α

(
Eα ĉ

†
α ĉα − Eα b̂α b̂

†
α

)
(2159)

where the expression for the energy of the charge conjugated state

Ecα = − Eα (2160)

has been used. On anti-commuting the positron and annihilation operators, one
finds

Ĥ =
∑

α

Eα

(
ĉ†α ĉα + b̂†α b̂α − 1

)
(2161)

The last term, when summed over α, yields the infinitely negative energy of
Dirac’s vacuum in which all the negative-energy states are filled. The vacuum
energy shall be used as the reference energy, so the Hamiltonian becomes

Ĥ =
∑

α

Eα

(
ĉ†α ĉα + b̂†α b̂α

)
(2162)

which describes the energy of the excited state as the sum of the energies of the
excited electrons and the excited positrons. The energies of the positrons and
electrons are given by positive numbers.

The momentum operator defined by Noether’s theorem is found as

P̂ =
∑

k,σ

h̄ k

(
ĉ†k,σ ĉk,σ + b̂†k,σ b̂k,σ

)
(2163)

which is just the sum of the momenta of the (positive-energy) electrons and the
positrons. The spin operator is defined as

Ŝ =
h̄

2

∫
d3r ψ̂† σ̂ ψ̂ (2164)

This is evaluated by substituting the expression for the field operators in terms
of the single-particle wave functions and the particle creation and annihilation
operators. The expectation value of the spin operator in the charge conjugated
state φcα is given by

∫
d3r φcα

†(r) σ̂ φcα(r) = −
( ∫

d3r φ†α(r) γ(2) σ∗ γ(2) φα(r)

)∗

=

( ∫
d3r φ†α(r) σ(2) σ̂∗ σ(2) φα(r)

)∗

= −
( ∫

d3r φ†α(r) σ̂ φα(r)

)∗

= −
( ∫

d3r φ†α(r) σ̂ φα(r)

)
(2165)
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The third line follows from the identity

σ(2) σ̂∗ σ(2) = − σ̂ (2166)

The last line follows since σ is Hermitean. Hence, the spin operator is evaluated
as

Ŝ =
h̄

2

∑

k;σ′,σ′′

χ†
σ′′ σ χσ′

(
ĉ†k,σ′′ ĉk,σ′ + b̂†k,σ′′ b̂k,σ′

)
(2167)

which is just the sums of the spins of the electrons and positrons.

Finally, the conserved Noether charge corresponding to the global gauge
invariance is given by

Q̂ =

∫
d3r ψ̂†(r) ψ̂(r)

=
∑

α

(
ĉ†α ĉα + b̂α b̂

†
α

)

=
∑

α

(
ĉ†α ĉα − b̂†α b̂α + 1

)
(2168)

The last term in the parenthesis, when summed over all states α, yields the total
charge of the vacuum which is to be discarded. Hence, the observable charge is
defined as

Q̂ =
∑

α

(
ĉ†α ĉα − b̂†α b̂α

)
(2169)

which shows that the total electrical charge defined as the difference between
the number of electrons and the number of positrons is conserved.

14.3 Parity, Charge and Time Reversal Invariance

The Lagrangian density may posses continuous symmetries and it may also
posses discrete symmetries. Some of the discrete symmetries are examined be-
low.

14.3.1 Parity

The parity eigenvalue equation for a multi-particle state with parity ηψ can be
expressed as

P̂ | ψ > = ηψ | ψ > (2170)

Since the action of the parity operator on states is described by a unitary opera-
tor, operators transform under parity according to the general form of a unitary
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transformation. In particular, the effect of the parity transformation on the
field operator is determined as

ψ̂(r) → ψ̂′(r′) = P̂ ψ̂(r) P̂ (2171)

The parity transformation is going to be determined in analogy with the parity
transformation of a classical field, in which the creation and annihilation oper-
ators are replaced by complex numbers. The parity operation on the quantum
field can be interpreted as only acting on the wave functions and not the particle
creation and annihilation operators. Quantum mechanically, this corresponds
to viewing the parity operator as changing the properties of the states to the
properties associated with the parity reversed states. Since the field operator is
expressed as

ψ̂(r) =
∑

α

(
ĉα φα(r) + b̂†α φ

c
α(r)

)
(2172)

one has

P̂ ψ̂(r) P̂ =
∑

α

(
ĉα P̂ φα(r) P̂ + b̂†α P̂ φcα(r) P̂

)
(2173)

However, under a parity transform a general Dirac spinor satisfies

P̂ φα(r) = ηPα φPα(r)

P̂ φcα(r) = ηPα
c φcPα(r) (2174)

where ηPα is a phase factor which represents the intrinsic parity of the state.
Furthermore, since P̂2 = Î, then the intrinsic parities ηPα and ηPα

c have to
satisfy the conditions

( ηPα )2 = 1

( ηPα
c )2 = 1 (2175)

So the intrinsic parities are ±1. The intrinsic parity of a state φα(r) and its
charge conjugated state φcα(r) are related by

ηPα
c = − ηPα (2176)

This follows since charge conjugation flips the upper and lower two-component
spinors and these two-component spinors have opposite intrinsic parity. There-
fore, the state φα(r) and the charge conjugates state φcα(r) have opposite pari-
ties. Therefore, it follows that the field operator transforms as

P̂ ψ̂(r) P̂ =
∑

α

(
ηPα ĉα φPα(r) − ηPα b̂†α φ

c
Pα(r)

)
(2177)

so the quantum field operators transforms in a similar fashion to the classical
field.
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The relations between parity reversed states and parity reversed charge con-
jugated states can be verified by examining the free particle solutions of the
Dirac equation and noting that the parity operator consists of the product of
γ(0) and spatial inversion r → − r. This spatial inversion acting on a wave
function with momentum k and spin σ becomes a wave function with momentum
−k and spin σ, up to a constant of proportionality. A free particle momentum
eigenstate is given by

φσ,k(x) = N
(

χσ
c h̄ k . σ

E + m c2
χσ

)
exp

[
− i ( k0 x

(0) − k . r )

]
(2178)

The application of the parity operator to the above wave function yields

P̂ φσ,k(x) = N γ(0)

(
χσ

c h̄ k . σ

E + m c2
χσ

)
exp

[
− i ( k0 x

(0) + k . r )

]

= N
(

χσ
− c h̄ k . σ

E + m c2
χσ

)
exp

[
− i ( k0 x

(0) + k . r )

]

= φσ,−k(x) (2179)

as anticipated. The charge conjugated state is given by

φcσ,k(x) = Ĉ φ∗σ,k(x)

= N Ĉ

(
χ∗
σ

c h̄ k . σ∗

E + m c2
χ∗
σ

)
exp

[
+ i kµ xµ

]
(2180)

where

Ĉ = − i γ(2)

=




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0


 (2181)

Therefore, the charge conjugate wave function is given by

φcσ,k(x) = − i σ̂(2) N
(

c h̄ k . σ∗

E + m c2
χ∗
σ

− χ∗
σ

)
exp

[
+ i kµ xµ

]
(2182)

The effect of the parity operator on this state leads to

P̂ φcσ,k(x) = − i σ̂(2) N
(

c h̄ k . σ∗

E + m c2
χ∗
σ

+ χ∗
σ

)
exp

[
+ i ( k(0) x0 + k . r )

]

= − i σ̂(2) N
(

− c h̄ ( − k . σ∗ )
E + m c2

χ∗
σ

+ χ∗
σ

)
exp

[
+ i ( k(0) x0 + k . r )

]

= − φcσ,−k(x) (2183)
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where in the first line the parity operator has sent r → − r and the factor of
γ(0) has flipped the sign of the lower components. In the second line we have
re-written k as −(−k) in the two two-component spinor, in anticipation of the
comparison with eqn(2180) which allows us to identify the factor of φcσ,−k(x).
This example shows that a state and its charge conjugate have opposite intrinsic
parities.

From the general form of the parity transformation on Dirac spinors, one
infers that the parity transform of the field operator is given by

P̂ ψ̂(r) P̂ =
∑

α

(
ĉα η

P
α φPα(r) − b̂†α η

P
α φcPα(r)

)
(2184)

On setting α′ = P α and noting that α = P α′, one finds

P̂ ψ̂(r) P̂ =
∑

Pα′

(
ηPPα′ ĉPα′ φα′(r) − ηPPα′ b̂

†
Pα′ φ

c
α′(r)

)
(2185)

and on transforming the summation index from α′ to α

P̂ ψ̂(r) P̂ =
∑

α

(
ηPPα ĉPα φα(r) − ηPPα b̂

†
Pα φ

c
α(r)

)
(2186)

Thus, the parity operation can also be interpreted as only affecting the particle
creation and annihilation operators, and not the wave functions. Quantum
mechanically, this interpretation corresponds to viewing that the particles as
being transferred into their parity reversed states

P̂ ψ̂(r) P̂ =
∑

α

(
P̂ ĉα P̂ φα(r) + P̂ b̂†α P̂ φcα(r)

)
(2187)

In this new interpretation, the effects of parity on the fermion operators are
found by identifying the operators multiplying the single-particle wave functions
in the previous two equations. The resulting operator equations are

P̂ ĉα P̂ = ηPPα ĉPα (2188)

and
P̂ b̂†α P̂ = − ηPPα b̂

†
Pα (2189)

which shows that fermion particles and anti-particles have opposite intrinsic
parities. Therefore, we conclude that, irrespective of which interpretation is
used, the field operator transforms as

P̂ ψ̂(r) P̂ =
∑

α

(
ηPα ĉα φPα(r) − ηPα b̂†α φ

c
Pα(r)

)
(2190)

which shows that the quantum field operators transforms in a similar fashion
to the classical field.
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14.3.2 Charge Conjugation

Under charge conjugation, the classical Dirac field transforms as

ψ → ψc = − i γ(2) ψ∗ (2191)

(up to an arbitrary phase) since this is how the single-particle wave functions
transform. Classically, the (anti-linear) charge conjugation operator Ĉ is the
product of complex conjugation and the unitary matrix operator Ĉ = − i γ(2).
If the classical field is expressed as a linear superposition of energy eigenfunc-
tions, the amplitudes of the eigenfunctions are represented by complex numbers.
In the charge conjugated state, these amplitudes are replaced by the complex
conjugates. In the quantum field, the amplitudes must be replaced by parti-
cle creation and annihilation operators. If an amplitude is associated with an
annihilation operator, then the complex conjugate of the amplitude is usually
associated with a creation operator. Hence, we should expect that charge con-
jugation will result in the creation and annihilation operators being switched.

Since the quantum field operator is expressed as

ψ̂(r) =
∑

α

(
ĉα φα(r) + b̂†α φ

c
α(r)

)
(2192)

the charge conjugate operation Ĉ transforms the field operator via

ψ̂c(r) = Ĉ ψ̂(r) Ĉ =
∑

α

(
ĉ†α Ĉ φα(r) Ĉ + b̂α Ĉ φcα(r) Ĉ

)
(2193)

where, in accord with the earlier comment about the relation between the quan-
tum and classical fields, the single-particle operators have been replaced by their
Hermitean conjugates. However, under charge conjugation general Dirac spinors
satisfy

Ĉ φα(r) = ηc φcα(r)

Ĉ φcα(r) = ηc φα(r) (2194)

therefore,

ψ̂c(r) = Ĉ ψ̂(r) Ĉ =
∑

α

ηc
(
ĉ†α φ

c
α(r) + b̂α φα(r)

)
(2195)

However, if the charge conjugation operator is to be interpreted as only acting
on the single-particle operators, one has

ψ̂c(r) =
∑

α

(
Ĉ ĉα Ĉ φα(r) + Ĉ b̂†α Ĉ φcα(r)

)
(2196)
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For consistency, the two expressions for ψ̂c(r) must be equivalent. Hence, the
operator coefficients of φα(r) and φcα(r) in the two expressions should be iden-
tical. Therefore, one requires that

Ĉ ĉα Ĉ = ηc b̂α

Ĉ b̂†α Ĉ = ηc ĉ†α (2197)

In other words, charge conjugation replaces particles by their anti-particles and
their quantum numbers α are unchanged. Furthermore, we identify the charge
conjugated field operator as

ψ̂c = Ĉ ψ̂ Ĉ = − i ηc γ(2) ψ̂† (2198)

where ψ̂† is the Hermitean conjugate (column) field operator. Apart from the
replacement of the complex amplitudes with the Hermitean conjugates of the
creation and annihilation operators, the above expression is identical to the ex-
pression for charge conjugation on the classical field.

The charge conjugation operator has the effect of reversing the current den-
sity operator

Ĉ ψ̂
†
γµ ψ̂ Ĉ = − ψ̂

†
γµ ψ̂ (2199)

which is understood as the result in the change of the charge’s sign.

14.3.3 Time Reversal

The time-reversal operation interchanges the past with the future. Time reversal
transforms the space-time coordinates via

T̂ (ct, r) = (−ct, r) (2200)

Thus, under time reversal, the time and spatial components of the position
four-vector have different transformational properties. Furthermore, the energy-
momentum four-vector transforms as

T̂ (p(0), p) = (p(0),−p) (2201)

Hence, the position four-vector and momentum four-vector have different trans-
formational properties. Due to the above properties, angular momentum (in-
cluding spin) transforms as

T̂ J = − J (2202)

Therefore, we find that time reversal reverses momenta and flips spins.

According to the Wigner theorem158, time reversal can only be implemented
by an anti-linear anti-unitary transformation. Since the time reversal operator

158E. P. Wigner. Göttinger. Nachr. 31, 546 (1932).
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T̂ interchanges the initial and final states, then

< T̂ ψf | T̂ ψi > = < ψi | ψf >

= < ψf | ψi >∗ (2203)

Thus, T̂ must be an anti-unitary operator. Furthermore, if the initial state is
given by a linear superposition

| ψi > =
∑

α

Cα | φα > (2204)

then the overlap is given by

∑

α

< T̂ ψf | T̂ Cα | φα > =
∑

α

C∗
α < ψf | φα >∗ (2205)

Hence, one infers that

T̂
∑

α

Cα | φα > =
∑

α

C∗
α T̂ | φα > (2206)

which is the definition of an anti-linear operator and so we identify T̂ as an
anti-linear operator.

It can be shown that the time-reversed Dirac wave function defined by

T̂ ψ(t, r) = − γ(1) γ(3) ψ∗(−t, r) (2207)

satisfies the Dirac equation with t → − t. For example, the plane wave
solutions of the Dirac equation can be shown to transform as

T̂ φσ,k(r, t) = − γ(1) γ(3) φ∗σ,k(r,−t)
= φ−σ,−k(r, t) (2208)

which flips the momentum and the spin angular momentum. It should be noted
that the matrix operator γ(1) γ(3) does not couple the upper and lower two-
component spinors, but nevertheless is closely related to the operator − i γ(2)

which occurs in the charge conjugation operator.

Also, if the Dirac field operator is required to satisfy

T̂ ψ̂(t, r) T̂ = − γ(1) γ(3) ψ̂∗(−t, r) (2209)

then the single-particle operators must satisfy

T̂ cα T̂ = cT α

T̂ bα T̂ = bT α (2210)

which correspond to particles following time-reversed trajectories.
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Table 19: Discrete Symmetries of Particles.

The charge conjugated of a state is a negative energy state with momentum −p
and spin −σ, that is interpreted as the state of antiparticle with momentum p
and spin σ.

Q p σ Λ

Charge Conjugation − + + +

Parity + − + −

Time Reversal + − − +

CPT − + − −

It is known that the weak interaction violates parity invariance. However,
there was a slight possibility that the weak interaction conserves the combined
operation of charge conjugation and spatial inversion159. Christenson, Cronin,
Fitch and Turlay160 performed experiments which showed that the combined
operation C P is violated in the decay of K mesons. There is reason to believe
that the weak interaction is invariant under the combined symmetry operation
C P T , since this is related to Lorentz invariance.

The combined symmetry operation Ĉ P̂ T̂ transforms a Dirac spinor as

ψ′(x′) = Ĉ P̂ T̂ ψ(x)

= − i γ(2)

(
P̂ T̂ ψ(x)

)∗

= + i γ(2)

(
γ(0) γ(1) γ(3) ψ∗(−x)

)∗

= i γ(2) γ(0) γ(1) γ(3) ψ(−x)
= i γ(0) γ(1) γ(2) γ(3) ψ(−x)
= γ(4) ψ(−x) (2211)

159J. C. Wick, A. S. Wightman and E. P. Wigner, Phys. Rev. 88, 101 (1952).
160J. Christenson, J. W. Cronin, V. I. Fitch and R. Turlay, Phys. Rev. Lett. 13, 138 (1964).
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14.3.4 The CPT Theorem

The CPT theorem states that any local161 quantum field theory with a Her-
mitean Lorentz invariant Lagrangian which satisfies the spin-statistics theorem,
is invariant under the compound operation Ĉ P̂ T̂ , where the operators can be
placed in any order.

The proof of the theorem relies on the fact that any Lorentz invariant quan-
tity must be created out of contracting the indices of bi-linear covariants (quan-
tities such as the current density jµ which involve products of the γµ) with the

indices of contravariant derivatives ∂µ. Since the joint operation P̂ T̂ results in
each of the contravariant derivatives ∂µ in the product changing sign, the theo-
rem ensures that the corresponding bi-linear covariants with which the deriva-
tives are contracted with must undergo an equivalent number of sign changes
under the compound operation Ĉ P̂ T̂ . The theorem only assumes invariance
under proper orthochronous Lorentz transformations and makes no assumptions
about reflection. The improper transformations are treated as analytic continu-
ation of the Lorentz transformation into complex space-time. The theorem was
first discussed by Lüders162 and Pauli163, and then by Lee, Oehme and Yang164.

The theorem has several consequences, such as the equality of the masses of
particles and their anti-particles. This follows since the mass mc is an eigenvalue
of p̂(0) in the particle’s rest frame and since one can find simultaneous eigenstates
of the commuting operators p̂µ and the product Ĉ P̂ T̂ . If one denotes the
compound operator as

Θ̂ = Ĉ P̂ T̂ (2212)

then

< Ψ | Ĥ | Ψ > = < Ψ | Θ̂−1 Θ̂ Ĥ Θ̂−1 Θ̂ | Ψ >

= < Ψ | Θ̂−1 Ĥ Θ̂ | Ψ > (2213)

since the CPT theorem ensures that Θ̂ commutes with the Hamiltonian

Θ̂ Ĥ Θ̂−1 = Ĥ (2214)

If | Ψ > represents a stable single-particle state, such as

| Ψ > = c†α | 0 > (2215)

161A Local Field Theory is one expressible in terms of a local Lagrangian density in which
interactions can be expressed in terms of products of fields at the same point in space-time.
It would be truly remarkable if this concept were to continue to work at arbitrarily small
distances!
162G. Lüders, Dan. Mat. Fys. Medd. 28, 5 (1954).

G. Lüders, Ann. Phys. 2, 1 (1957).
163W. Pauli in Niels Bohr and the Development of Physics, Pergamon Press, London (1955).
164T. D. Lee, R. Oehme and C. N. Yang, Phys. Rev. 106, 340 (1957).
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then the state Θ̂ | Ψ > describes an anti-particle with flipped angular momen-
tum. This follows since the vacuum satisfies

Θ̂ | 0 > = | 0 > (2216)

Therefore, the single-particle state transforms as

Θ̂ | Ψ > = Θ̂ c†α Θ̂−1 Θ̂ | 0 >

= Θ̂ c†α Θ̂−1 | 0 > (2217)

By successive applications of Ĉ, P̂ and T̂ , one finds that the operator Θ̂ c†α Θ̂−1

reduces to the creation operator for the anti-particle with reversed angular mo-
mentum. Therefore, the state Θ̂ | Ψ > describes an anti-particle with flipped
angular momentum. From the equality of the expectation values

< Ψ | Ĥ | Ψ > = < Ψ | Θ̂−1 Ĥ Θ̂ | Ψ > (2218)

one finds that the energy of a particle is equal to the energy of an anti-particle
with a reversed spin. However, as the rest mass cannot depend on the angular
momentum, the mass of a particle is equal to the mass of its anti-particle. For
unstable particles, the equality of the mass of the particle and anti-particle is
ensured by the invariance of the S-matrix under Ĉ P̂ T̂ .

Likewise, one can use the CPT theorem to show that the total decay rate
of a particle into products is equal to the total decay rate of the anti-particle
into its products165. It should be noted that the partial decay rates into specific
final states are not equivalent, only the sums over all final states are equal.

14.4 The Connection between Spin and Statics

The above result for the energy operator of the Dirac field illustrates the “Spin
Statistics Theorem” proposed by Pauli166. The theorem states that particles
with half odd-integer spins obey Fermi-Dirac Statistics and particles with integer
spins obey Bose-Einstein Statistics. The Dirac spinor describes spin one-half
particles, and if these particles are chosen to satisfy anti-commutation relations,
then the energy of the excited states is given by

ĤDirac =
∑

α

Eα

(
ĉ†α ĉα + b̂†α b̂α

)
(2219)

which only has positive excitation energies. Hence, if the wave function changes
sign under the interchange of a pair of spin one-half particles the energy is
bounded from below. If the field operators had been chosen to obey commu-
tation relation, then the wave function would have been symmetric under the

165T. D. Lee, R. Oehme and C. N. Yang, Phys. Rev. 106, 340 (1957).
166W. Pauli, Phys. Rev. 58, 716 (1940).

391



interchange of particles. If this were the case, there would be a negative sign in
front of the positron energies so that the energy would have been unbounded
from below. This would have implied that the vacuum would not be stable, and
the theory is erroneous. This can be taken as implying that spin one-half par-
ticles must obey Fermi-Dirac Statistics. The other part of the theorem compels
integer spin particles to be bosons. Therefore, since photons have spin one, the
expression for the energy of the electromagnetic field is considered to be given
by

ĤPhoton =
∑

k,α

h̄ ωk
2

[
â†k,α âk,α + âk,α â

†
k,α

]
(2220)

This Hamiltonian represents the energy of a spin-one particle. The photon
creation and annihilation operators satisfy commutation relations, therefore,
the energy can be expressed as

ĤPhoton =
∑

k,α

h̄ ωk
2

[
2 â†k,α âk,α + 1

]
(2221)

which is the sum of the vacuum energy (the zero-point energies) and the ener-
gies of each excited photon. The excitation energies are positive. If it had been
assumed that the photon wave functions were anti-symmetric under the inter-
change of particles, then one would have found that the photon energies would
have been identically equal to zero. Furthermore, the excited photons would
have carried zero momentum and, therefore, be completely void of any physi-
cal consequence. Hence, one concludes that spin-one photons must obey Bose-
Einstein Statistics. The generalized theorem167 is an assertion that a non-trivial
integer spin field cannot have a anti-commutator that vanishes for space-like sep-
arations and a non-trivial odd half-integer spin field cannot have a commutator
that vanishes for space-like separations.

15 Massive Gauge Field Theory

Following Yang and Mills168, we shall consider a two-component complex scalar
field. The field can be expressed as a two-component field, representing states
with different isospin

Φ =

(
Φ1

Φ2

)
(2222)

where the Φi are complex scalars. That is

Φ1 = ℜe Φ1 + i ℑm Φ1

Φ2 = ℜe Φ2 + i ℑm Φ2 (2223)

167R. Streater and A. S. Wightman, PCT, Spin and Statistics, and All That, Princeton
Univ. Press (2000).
168C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1964).
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This is equivalent to assuming four independent real fields. The inner product
is defined as

Φ† Φ = Φ∗
1 Φ1 + Φ∗

2 Φ2 (2224)

15.1 The Gauge Symmetry

We shall assume that the Lagrangian is invariant under a generalized gauge
transformations of the form

Φ → Φ′ = exp

[
− i α(0)

]
Û Φ (2225)

where α(0) is an arbitrary scalar. The invariance of the Lagrangian under mul-
tiplication of the wave function by the phase factor, is equivalent to the usual
U(1) gauge invariance which has been discussed in the context of the electro-
magnetic field. The operator Û must be a unitary operator, if the norm of Φ is
conserved by the generalized gauge transformation

Φ†′ Φ′ = Φ† Û† Û Φ

= Φ† Φ (2226)

Therefore, one requires
Û† Û = Î (2227)

and so Û must be a unitary operator. The operator Û is assumed to be an
arbitrary unitary matrix that acts on isospin states, that is, it acts on the two
components of Φ. Furthermore, it shall be assumed that the unitary matrix
has determinant + 1. Hence, the Lagrangian is assumed to be invariant under
a set of SU(2) gauge transformations. A general transformation of SU(2) is
generated by the three operators

τ (1) =

(
0 1
1 0

)

τ (2) =

(
0 −i
i 0

)

τ (3) =

(
1 0
0 −1

)
(2228)

where these matrices generate a Lie algebra. That is, the algebra of the com-
mutation relations is closed, since

[ τ (i) , τ (j) ] = 2 i ξi,j,k τ (k) (2229)

where ξi,j,k is the antisymmetric Levi-Civita symbol. An arbitrary unitary
transformation can be expressed as

Û = exp

[
− i

∑

k

αk τ (k)

]
(2230)
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where the αk are three real quantities. This represents an arbitrary rotation in
isospin space169. The U(1) gauge transformation can also be represented in the
same way. Namely, the U(1) transformation can be expressed as

Û0 = exp

[
− i α(0) τ (0)

]
(2231)

where τ (0) is the unit matrix

τ (0) =

(
1 0
0 1

)
(2232)

We should note that since τ (0) commutes with all isospin operators, the U(1)
symmetry is decoupled from the SU(2) symmetry, and hence, when a coupling
to gauge fields is introduced, the U(1) gauge field may have a coupling constant
which is different from the coupling constant for the three SU(2) gauge fields.

15.2 The Coupling to the Gauge Field

We shall start with a Lagrangian density Lscalar describing the field free two
component scalar field, given by

Lscalar = ∂µ Φ† ∂µ Φ − V (Φ† Φ) (2233)

where V (Φ†Φ) is an arbitrary scalar potential. For example, in a Klein-Gordon
field theory describing particles with mass m

V (Φ† Φ) =

(
m c

h̄

)2

Φ† Φ (2234)

The Lagrangian is invariant under the combined gauge transformation if the
quantities αk are independent of x. In this case, the field is invariant under the
transformation which is identical at each point in space, so the Lagrangian is
said to have a global gauge invariance.

We shall alter the Lagrangian, such that it is invariant under a gauge trans-
formation which varies from point to point in space. These are local gauge
transformations, in which the αk(x) depend on x. If the Lagrangian is to be
invariant under local gauge transformations, then one must introduce a coupling
to gauge fields Aµ. This coupling compensates for the change of the derivatives
under the gauge transformation, so that

[ (
∂µ − i g Aµ

)
Φ

]† [ (
∂µ − i g Aµ

)
Φ

]

=

[ (
∂µ − i g A′

µ

)
Φ′
]† [ (

∂µ − i g Aµ′
)

Φ′
]

(2235)

169We shall not stop and contemplate the question of what restricts our measurements have to
be quantized along the isospin z-direction, and shall not ponder why there is a super-selection
rule at work.
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Since
Φ = Û† Φ′ (2236)

we require that

[ (
∂µ − i g Aµ′

)
Φ′
]

= Û

[ (
∂µ − i g Aµ

)
Φ

]
(2237)

so the fields Aµ must transform as

Aµ′ = Û Aµ Û† +
i

g
Û

(
∂µ Û†

)
(2238)

where the derivative only acts on the unitary transformation. Since the Û are
generated by τ (k), there must be four components of Aµ, i.e. the fields have
four components Aµ,k. The matrix form of Aµ is given by

Aµ =
3∑

k=1

Aµ,k τ (k)

=

(
Aµ,(3) Aµ,(1) − i Aµ,(2)

Aµ,(1) + i Aµ,(2) − Aµ,(3)

)
(2239)

Under a gauge transformation Û , the vectors Aµ,k are transformed in isospin
space. For a global gauge transformation, the transformation is a rotation in
isospin space. The gauge field Aµ is also required to transform as a four-vector
under Lorentz transformations.

We shall identify the contravariant derivative for the massive scalar particles
as170 as

Dµ = ∂µ − i g Aµ − i g0 Aµ0 (2240)

and one recognizes that this has the same form as the coupling of charged
particles to the EM field. In that case, the coupling occurs solely via τ (0), the
coupling constant is given by g0 = q

h̄ c
and the field Aµ(0) = Aµ is the

four-vector potential. Since τ (0) commutes with all isospin operators, it is not
necessary to consider g0 to be identical with the g value for the SU(2) gauge
fields.

15.3 The Free Gauge Fields

We have four real four-vector fields Aµ,k. These are the gauge fields. The free
gauge fields exist in the absence of the particles, and has a free Lagrangian. The
field strength tensors Fµ,ν are given by the SU(2) generalized form of the EM
field tensor

Fµ,ν = Dµ Aν − Dν Aµ (2241)

170This can be related to the contravariant derivative familiar in the context of general
relativity, if one follows the logic adopted by Weyl and considers GR as a gauge field theory.
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where D is the covariant derivative only involving the SU(2) triplet of gauge
fields. It should be noted that since the gauge fields do not commute, this
involves terms which are second-order in the field amplitudes. That is

Fµ,ν =

(
∂µ Aν − ∂ν Aµ

)
− i g

(
Aµ Aν − Aν Aµ

)
(2242)

The quadratic terms can be evaluated by using the commutation relations of
the isospin operators τ (k). The k-th component of the SU(2) triplet of gauge
fields is given by

Fµ,νk = ∂µAνk − ∂νAµk + g
3∑

{i,j}=1

ξi,j,k ( Aµi A
ν
j − Aνi A

µ
j )

= ∂µAνk − ∂νAµk + 2 g
3∑

{i>j}=1

ξi,j,k ( Aµi A
ν
j − Aνi A

µ
j )

(2243)

where the indices i and j are summed over and ξi,j,k is the Levi-Civita symbol.
In arriving at the above expression, we have used the identity

τ (i) τ (j) = δi,j τ (0) + i
3∑

k=1

ξi,j,k τ (k) (2244)

found by combining the anti-commutation and commutation relations for the
Pauli spin matrices. There is no contribution to the last term in the field tensor
from the U(1) gauge field Aµ(0) since τ (0) commutes with all other matrices. The

zeroth-component of the field tensor is simply given by

Fµ,ν(0) = ∂µAν(0) − ∂νAµ(0) (2245)

as expected for an electromagnetic field. Since the SU(2) gauge fields don’t
commute, the field theory is a non-Abelian gauge field theory. Under an SU(2)
transformation, the field tensors transform according to

Fµ,ν → Fµ,ν ′ = Û Fµ,ν Û† (2246)

which is just a local unitary transform in isospin space. The Lagrangian density
for all the free gauge fields can be expressed as

Lgauge = − 1

32 π
Trace Fµ,ν Fµ,ν (2247)

where the Trace is evaluated in isospin space and takes into account that there
are a total of four fields. The Lagrangian density can be expressed directly in
terms of the contributions from four components of the field. The result can be
expressed as

Lgauge = − 1

16 π

3∑

k=0

F kµ,ν F
µ,ν,k (2248)
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where we have decomposed the fields as

Fµ,ν =
∑

k

F kµ,ν τ
(k) (2249)

evaluated the product of the Pauli spin matrices and used the fact that the
Pauli spin matrices τ (k) for k 6= 0 are traceless.

One can consider the k-components of the vector potential Aµ (i.e. the three
real components Aµk for fixed µ) as forming three-vectors Aµ in isospin space.
These quantities transform as three-vectors under transformations in isospin
space, and also the Aµ transform as four-vectors under Lorentz transformations
in Minkowsky space-time. The three-vector fields are spin-one bosons with
isospin one. Hence, we might expect that the isospin triplet should contain two
oppositely charged particles and one uncharged particle. These particles are
supplemented by the particle corresponding to the single uncharged field Aµ(0).

In terms of this set of isospin vectors, the free gauge field Lagrangian density
can be written in the form of a sum of a scalar product in isospin space and an
isospin scalar

Lgauge = − 1

16 π

(
(∂µAν − ∂νAµ) + 2g Aµ ∧Aν

)
.

(
(∂µAν − ∂νAµ) + 2g Aµ ∧Aν

)

− 1

16 π

(
∂µAν(0) − ∂νAµ(0)

)(
∂µAν,(0) − ∂νAµ,(0)

)
(2250)

It should be noted that the Lagrangian reduces to the sum of four non-interacting
electromagnetic Lagrangians in the limit g → 0. However, at finite values of
g, the Lagrangian density contains cubic and quartic interactions with coupling
strengths that are fixed by gauge invariance in terms of the single gauge param-
eter g.

Figure 71: The interaction vertices representing the interaction of three and
four isospin triplet gauge field bosons.

Exercise:
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Determine the equations of motion for the vector gauge fields, in the presence
of a source term

Lint = − 1

c
Trace ( Aµ . j

µ ) (2251)

where the current source jµ has also been decomposed in terms of Pauli spin
matrices.

It is convenient to introduce the two combinations

A±
µ =

1√
2

(
A(1)
µ ∓ i A(2)

µ

)
(2252)

which appear in the isospin matrix form of Aµ. These combinations are mutually
complex conjugate. Likewise, one can introduce the combinations of the field
tensors

F±
µ,ν =

1√
2

(
F (1)
µ,ν ∓ i F (2)

µ,ν

)
(2253)

which are evaluated as

F±
µ,ν = ( ∂µ ∓ 2 i g A(3)

µ ) A±
ν − ( ∂ν ∓ 2 i g A(3)

ν ) A±
µ (2254)

The third component of the field tensor can be written as

F (3)
µ,ν = ( ∂µ A

(3)
ν − ∂ν A

(3)
µ ) + 2 i g ( A−

µ A+
ν − A−

ν A+
µ ) (2255)

In terms of these new combinations, the free Lagrangian for the gauge fields
become

Lgauge = − 1

16 π
F (0)
µ,ν F

µ,ν,(0) − 1

16 π
F (3)
µ,ν F

µ,ν,(3) − 1

8 π
F−
µ,ν F

µ,ν,+ (2256)

where the first two terms are recognized as being similar to the Lagrangian den-
sity for the electromagnetic field. It was first hypothesized by Sheldon Glashow
that the electro-weak interaction is produced by the massless vector bosons de-
scribed by the above Lagrangian171. Masses for the gauge bosons should not
be added by hand, since the resulting theory would not be renormalizable. To
retain renormalizability of the theory, and to have massive vector bosons, we
need to break the symmetry.

15.4 Breaking the Symmetry

We shall assume that our massive charged scalar boson field has broken symme-
try172. The small amplitude excitations of the field with broken symmetry will

171S. L. Glashow, Nuclear Physics 22, 579-588, (1961).
172S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967), Abdus Salam, Proc. of the 8th Nobel

Symposium, Stockholm (1968).
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be modified, as will be the excitations of the gauge fields. Due to the symmetry-
breaking of the scalar field, the U(1) vector gauge field will become coupled to
the triplet of SU(2) gauge fields. When the symmetry is broken, the elementary
excitations of the coupled system of fields change and these new excitations will
represent the observable particles.

The potential for the two-component scalar field is chosen to be given by

V (Φ) =

(
m c

2 h̄ φ0

)2 [
Φ† Φ − φ2

0

]2
(2257)

where φ0 is a fixed real constant. The lowest-energy state described by this
potential is given by

Φ† Φ = φ2
0 (2258)

This state is degenerate with respect to global rotations in the four-dimensional
space of ℜe Φ1 , ℑm Φ1 , ℜe Φ2 , ℑm Φ2 which keeps the magnitude of Φ
constant and uniform over space.

The symmetry is broken by assuming that the physical ground state corre-
sponds to one specific choice of the uniform field Φ. Given the specific ground
state which the system chooses spontaneously, one can make use of the global
gauge invariance to describe the ground state Φ0 as a field which has one non-
zero component which is real. That is, αk can be chosen so that

Φ0 =

(
ℜe Φ1

0

)

=

(
φ0

0

)
(2259)

The excited states can be expressed as

Φ =

(
φ0 + χ1

0

)
(2260)

where the local gauge degrees of freedom have been used to make χ1 real. This
excited field is invariant under the transformation

Φ → Φ′ = ÛEM Φ (2261)

where ÛEM is restricted to have the form

ÛEM =




1 0

0 exp

[
− i Λ

]

 (2262)

This is a transformation in which the U(1) transformation is combined with a
specific SU(2) transformation

ÛEM = exp

[
− i

Λ

2

]



exp

[
+ i Λ

2

]
0

0 exp

[
− i Λ

2

]


 (2263)
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and will turn out to represent the residual U(1) gauge invariance of the electro-
magnetic field.

The Lagrangian density for the isospin doublet of scalar fields and their
couplings can be evaluated for the excited state as

Lscalar = (DµΦ)† DµΦ −
(
m c

h̄

)2

χ2
1 (2264)

where the covariant derivative of the doublet of scalar fields is given by

DµΦ =

(
∂µχ1

0

)
− i g0

(
Aµ,(0) ( φ0 + χ1 )

0

)
− i g

(
Aµ,(3) ( φ0 + χ1 )√
2 Aµ,− ( φ0 + χ1 )

)

(2265)
A new interaction strength λ can be defined as

λ =
√

g2
0 + g2 (2266)

and on defining an angle θ via

tan θ =
g

g0
(2267)

the coupling constants can be represented as

g0 = λ cos θ

g = λ sin θ (2268)

Thus, the covariant derivative has the connection with the field

AµZ = cos θ Aµ,(0) + sin θ Aµ,(3) (2269)

The field AµZ will turn out to be the field that describes the neutral Z particle.
The field orthogonal to the Z field is defined as

AµEM = − sin θ Aµ,(0) + cos θ Aµ,(3) (2270)

When expressed in terms of the transformed fields and constants, the covariant
derivative terms become

DµΦ =

(
∂µχ1

0

)
− i ( φ0 + χ1 )

(
λ AµZ

g
√

2 Aµ,−

)
(2271)

The lowest-order terms in the Lagrangian density of the non-uniform scalar field
and all its couplings to the gauge fields are expressed as

Lscalar = ∂µχ1 ∂
µχ1 −

(
m c

h̄

)2

χ2
1 + λ2 φ2

0 AµZ Aµ,Z + 2 g2 φ2
0 A

µ+ A−
µ

(2272)
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The higher-order terms, which have been neglected, describe the self-interactions
between the scalar field and the residual interactions between the scalar field
and the gauge fields.

The Lagrangian density for the free gauge field is

Lgauge = − 1

16 π
F (0)
µ,ν F

µ,ν,(0) − 1

16 π
F (3)
µ,ν F

µ,ν,(3) − 1

8 π
F−
µ,ν F

µ,ν,+ (2273)

has to be expressed in terms of the new fields AµZ and AµEM . The inverse
transform is given by

Aµ,(0) = cos θ AµZ − sin θ AµEM

Aµ,(3) = sin θ AµZ + cos θ AµEM (2274)

If one defines Fµ,νZ and Fµ,νEM as the transformed field tensors evaluated to lowest-
order in the fields

Fµ,νZ = ∂µ AνZ − ∂νAµZ
Fµ,νEM = ∂µ AνEM − ∂νAµEM (2275)

then the original field tensors can be expressed as

Fµ,ν(0) = cos θ Fµ,νZ − sin θ Fµ,νEM

Fµ,ν(3) = sin θ Fµ,νZ + cos θ Fµ,νEM + 2 i g ( Aµ− Aν+ − Aν− Aµ+ )

(2276)

The Lagrangian density describing the small amplitude excitations of the scalar
field and the gauge fields can be written as

LFree = ∂µχ1 ∂
µχ1 −

(
m c

h̄

)2

χ2
1

− 1

16 π
Fµ,ν,Z Fµ,νZ + λ2 φ2

0 AµZ Aµ,Z

− 1

16 π
Fµ,ν,EM Fµ,νEM

− 1

8 π
F−
µ,ν F

µ,ν,+ + 2 g2 φ2
0 A

µ+ A−
µ (2277)

In electro-weak theory, the first term represents the free uncharged scalar
boson. The second term describes an uncharged vector particle with mass MZ

proportional λ φ0. The third term describes the uncharged massless vector
particle known as the photon. From the equations of motion for Aµ,±, the
remaining term can be shown to describe a pair of charged particles with masses
MW proportional to g φ0 = sin θ λ φ0. These particles are known as the W+
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and W− particles. The W+ and W− particles are charged and the observed
charges are ± e. The interaction mediated by the massive vector bosons is found
to have a finite range (≈ 10−18m), and is responsible for the weak interaction.
The experimentally determined masses173 are MW c

2 ≈ 80.33 GeV and MZc
2 ≈

91.187 GeV. Nearly all the parameters of this theory have been determined
through experiment, the only exception is the mass m of the scalar particle
which remains to be discovered. The ratio of the masses determines the angle
θ via174

MW

MZ

= sin θ (2278)

which yields sin θ ≈ 0.8810. The W± particles carry electrical charges ±e since
they couple to the electromagnetic field. This can be seen by examining the
W± field tensor

Fµ,ν± = ( ∂µ ∓ 2 i g Aµ,(3) ) Aν± − ( ∂ν ∓ 2 i g Aν,(3) ) Aµ± (2279)

where

Aµ,(3) = sin θ AµZ + cos θ AµEM (2280)

Therefore, the covariant derivatives of the fields DµAν± couple them to the elec-
tromagnetic field AµEM with either a positive or negative coupling constant of
magnitude 2 g cos θ. Since only electrically charged particles couple to the
electromagnetic field, one can make the identification

(
e

h̄ c

)
= 2 g cos θ = λ sin 2θ (2281)

which determines the coupling strengths. Furthermore, because the coupling
strengths have been completely determined, the observed masses can be used
to determine φ0. This leads to the identification

φ2
0 =

sin2 2θ

8 π h̄ c

( MZc
2 )2

( e
2

h̄c
)

(2282)

which leads to φ0 ≈ 178 GeV /
√
h̄c, where h̄c ≈ 197 MeV fm. Hence, the

only undetermined parameter is the mass of the Higgs particle m. Recent ex-
periments175 have found a narrow resonance with an energy of approximately
126 GeV. The resonance has properties consistent with those expected of the
Higgs particle. The resonance decays either into two photons or two vector
bosons. Yang Mills theories, even if symmetry is spontaneously broken as in the
Weinberg-Salam theory, were shown to be renormalizable by G. t’ Hooft176.

173G. Arnison, A. Astbury, B. Aubert, et al., Phys. Lett. B, 122 103-116 (1983).
G. Arnison, O. C. Allkofer, A. Astbury, et al., Phys. Lett. B 147, 493-508 (1984).
174It is customary to define the Weinberg angle θW via cos θW = MW

MZ
.

175Physics Letters B, 716, 1 (2012), Physics Letters B, 716, 30 (2012).
176G. t’ Hooft, Nuclear Physics, B 35, 167 (1971), G. ’t Hooft and M. Veltman Nuclear

Physics B 44, 189 (1972).
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